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CIIYTHUKOBBI METOJI, OCHOBAHHBI HA KOBAPUAIINM,
JIJISI TOJUIEPKKHU AESTEJBHOCTH ADPOHET -
BEPU®UKALVS JAHHBIX MO IIBETY OKEAHA

Llens paboTHI — ONpeNeNTUTh MECTa B UCCIIEyeMOi 00JIacTH OKeaHa, IJie HaTypHbIe U3Mepe-
Hust Ui KanuOpoBku/Bepudukanuu (Cal/Val) B TeueHHe pa3iMyHBIX HEPHOJOB BPEMEHH
obecrieunBarOT HauOoJbIICE YIYYIICHUE PAJNOMETPHYECKOH TOYHOCTH U JIOCTOBEPHOCTH
PE3YJIbTATOB, NOJYYA€MBIX IO COYTHUKOBBIM JIaHHBIM. Hpe}lCTaBﬂeH METO O6'I)CJII/IH3HI/IH
CIyTHUKOBBIX M300pa)XCHUH C JaHHBIMA HAaTYPHBIX M3MEPEHHH M BBIPAOOTKH HaWITydlleH
CTpaTeruy NMpoBEJCHUS HATYpPHBIX N3MEPEHNH, TOAXOAANIEH /ISl IPOBEJCHUS CITyTHUKOBOM
KaJIMOpOBKH/BepUpHUKALMK. DTa METOJOJIOTHSI MCIIONb3YeT CITyTHHUKOBBIE TaHHBIC, YTOOBI
MIOCTPOUTH KOBapHalMOHHYIO MaTpHIly, COJCpIKallylo MH(OPMALHUI0 O MPOCTPAHCTBEHHO-
BPEMEHHOH M3MEHYHBOCTH B HCCIIeayeMoil oonacti. KoBapuannoHHas MaTpuiia HCIIOIb3Y-
ercs B baiiecoBckom MeTofe A71st 00beAMHEHHS CITyTHUKOBBIX W HATYPHBIX JTaHHBIX M CO3.a-
HUS TPOJAYyKTa C HaWMEHbIIMMHU ommmOkamu. Hawnmydmee Mecto mis  KaauOpoB-
KW/BepU(PHUKANK HAXOIUTCSI C IOMOINBI0O METOJa ONTHMAaJIbHOTO IUIaHMpoBaHUS (A-
ONTHUMAJBHBIA IUIaH), KOTOPBIH MHHHUMHU3MPYET PACUETHYIO IHCHEPCHIO OOBEANHEHHOI'O
MIPOIYKTA.

KoaioueBble ci10Ba: criyTHUKOBBIE H300paKeHHsI, HATYPHBIE H3MEPEHHs1, KaTMOPOBKa/BepupHrKanus, 00beANHEH-
HBIA IPOJYKT.

With the increasing availability of satellite time-series imagery of sea surface temperature
(SST) and ocean color (e.g. from Moderate Advanced Very High Resolution Radiometer-
MODIS), it has become possible to monitor temporal and spatial variation of coastal and open
waters. These data improve our view of the ocean when compared to the very limited spatial
sampling offered by in situ observations (e.g. ships and moorings). Generally, merging remote
sensing data with in situ measurements has become a standard procedure to increase the quality
of satellite derived products. Conventionally, covariance analysis is applied to oceanographic and
meteorological data sets to decompose space and time distributed data into modes ranked by their
temporal variance, while optimum sampling analysis is applied to find adequate number and
allocation of in situ data to improve satellite quality by reducing the overall observational error.
In this paper, different fields needed for implementing such concepts are studied and presented.

These methodologies were implemented on several available data sets (e.g. using satellite
MODIS time series and optical in situ platform, such as the AErosol RObotic NETwork —
AERONET and the Marine Optical Buoy-MOBY platforms).

Methods. Theoretical Approach. Time series of satellite images can be employed to
build a covariance matrix encoding the spatio-temporal variability of an area of interest. In situ
observational resources can then be adaptively distributed following a covariance-oriented cri-
terion, to assign the best value of the in sifu observed field at grid points of a regular grid coin-
cident with the centers of satellite pixels. The best in situ location can be found implementing
optimum design procedure, such as A-optimum design.

Covariance — Consider a generic time-series {y(x, ,#,)}", measured from satellite with a

i=1

given observational error. The dataset is a three-dimensional grid that depends on longitude (x),
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latitude () and time (f). Alternatively, this gridded data can be reshaped into a two-
dimensional grid of M rows by N columns:

Ty =T(N,M),

where M represents the number of spatially distributed points (the product of x by y) and N
represents the number of points over time (¢). Using this representation, the covariance matrix
(CO) can be numerically evaluated by multiplying 7 by its transpose:

C oc (T, ) Thy -

Because the covariance matrix C is derived from satellite observations, it will contain contri-
butions from the sensor noise (o ). For this reason we have studied a methodology to remove the

impact of the sensor noise (supposing that ¢?, is known a priori) on the covariance matrix. To
achieve this, we have decomposed C in two orthogonal matrixes that verify the following equation:

C-V=V-D. (1)

These matrices are the eigenvalues (D) and eigenvectors (V) of C; in particular, D is the
canonical form of C (a diagonal matrix with C's eigenvalues on the main diagonal), while V' is
the modal matrix (its columns are the eigenvectors of C). Assuming the sensor noise as a white
noise stochastic process, its impact on the covariance matrix C is limited to the diagonal terms.
These characteristics make it possible to remove the sensor noise by using the eigenvalues of
C; therefore the matrix D will be modified as follow:

oo (5

where / is the MXM identity matrix. Finally, replacing the negative eigenvalues with zeros, the
new covariance matrix can be evaluated using the formula:

C=VDV". )

Merging procedure — Merging remote sensing data with in situ measurement is a
standard procedure that allows increasing the quality of the satellite-derived products. The idea
is to study the spatial-temporal variability of the satellite data and to distribute the in situ
sample over the image following the covariance criterion. Therefore, once the covariance C has
been obtained from eq.(2), a new field, merging in situ and satellite data, is retrieved maximiz-
ing the following probability distribution:

Py ) o expl=(W, ~H)" 3, (W, = HY) = (0, =) € (w, =)
Where vy, represents the vector of pixel values, v, is the observation vector, f is the observa-

tion matrix, Zobg is the observation error matrix and  is the average field. The first part in the

exponential represents the likelihood density while the second product of matrices represents the
a priori probability. The merging procedure is performed maximizing the a posteriori probability
distribution; therefore the best estimation is represented by the field v .., that verifies:

-1

W erged = A1 rr}/in((wobs ~Hy, Y Y (v~ Hy )~ (v, ~9) €y, ~ ). (3)
The solution of eq.(3) represents the merged image, fig.1 show an example of merging
using SST AVHRR image and an in situ track.
Optimum design and Uncertainty Index — Sampling strategies of in situ observational re-
sources driven by a design principle called A-optimality could substantially improve the accu-

racy of the final blended products. The scope of A-optimal designs is to minimize the variance
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of the estimated field with respect the sample locations. This optimal criterion will select loca-
tions in regions with low uncertainty and large spatial representation. Like other standard vari-
ance-oriented criteria in optimal experimental design, a covariance model must be known a
priori. In situ observational resources could be adaptively distributed following the variance-
oriented criterion, to assign the best values of the in situ observed fields at grid points of a reg-
ular grid coincident with the center of satellite pixels. This procedure would ensure the opti-
mality of merged products for limited in situ observational resources on the basis of an Uncer-
tainty Index (UI). The implementation of this technique was initially performed using a Ge-
netic Algorithm (GA) that minimizes the process of natural evolution. This algorithm is itera-
tively used to search the best in situ position minimizing the variance of the retrieved solutions.
The optimization problem was also investigate using a Simulated annealing (SA) strategy that
is a generic probabilistic metaheuristic for the global optimization problem of locating a good
approximation to the global optimum of a given function in a large search space. The retrieved
optimization results from GA and from SA are comparable; therefore the SA method results
more efficient in term of computation (faster) than GA.

a b

Merging: MODIS and in situ
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Fig.1. AVHRR SST image and in situ ship data (black dots) — a; colored circles display the field
resulting from merging ship and satellite observations of the sea surface temperature — b.
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Results. Implementation of the procedures described above focuses on the AErosol
RObotic NETwork (AERONET) sites. AERONET program is a federation of ground-based
remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and
other national collaborators. The program provides a long-term, continuous and readily
accessible public domain database of aerosol optical, mircrophysical and radiative properties
for aerosol research and characterization, validation of satellite retrievals, and synergism with
other databases [3, 4]. In particular we focus the attention on the Venice Acqua Alta
AERONET site that is located 13 KM of the cost of the Venetian lagoon (as in fig.2).

Fig.2. The northern-East Italy coast region, showing the location of the AERONET site.

To evaluate the AERONET in situ position in terms of uncertainly we have implemented the
proposed procedure on monthly satellite time-series that have been retrieved using several Moder-
ate Advanced Very High Resolution Radiometer (MODIS) images acquired on the area of interest
with 1 km at nadir of ground resolution. In particular we have performed the following steps.

Monthly time series have been created using about two acquisitions per days during the
period from January 2005 to December 2009, for a total of 2135 images. All the «clear» im-
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ages (438) were processed focusing the attention on a box area of 30 by 30 km around the
AERONET site (this size was fixed for the convenience of computation and analysis). Each
monthly time series were arranged into a two-dimensional array 7(x, f), where x and ¢ are the
spatial and temporal indices. Because the data retrieved from MODIS are much more dense in
space than in time (x>>f), the covariance matrix was evaluated implementing eq.(1) for each
month. To represent the monthly statistic analysis we have evaluate the mean of each time se-
ries and we also define a «Historical Covariance Map» (Cuist) that represents the pixel stan-
dard deviation of considered time-series, as resumed in fig.3. Using this technique we produce
twelve Cpsr that have been used to calibrate in sifu data without satellite acquisitions but tak-
ing into account an «satellite statistical behavior.

NIUMBER OF IMAGES

r - availa Cl - nois
Monthoo200d2007 oodeogs] - wwalable Clondheite 1\ HLY STATISTIC ANALYSIS (an example from July):

By o | Yes| Te 5 g >
Jan | No | Ne | Mo | Yes| Tes B 1518 ,,r:’fi.-" . Historical Map
ivel o L ve | vo [ res]ies P 14529 st e };";; - Time-series mean
Nar | Mo | Mo | Mo | Fes | Tes e 1563027 gg e |
spr | Mo | Mo | Mo | Yes| tes e 144 30 ik 3 1l |': I.|,‘[.I
May | Yes | Yes | Tes | Yes | Tes B 27573 e [ h VA M1

ALY U

i | No | Mo | No | Yes | Yes [ 148 032 * oy T |||"r 4 WA Il
bl | Vo [ 2o | Mo | Yes| Fes | 149 16 “T T Tz 137 'Y il
Aug | No | No | No | ves|tes e 15152 : >3‘3§%
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Dec | No [ No | Mo | Yes | Jes P 150 15

Fig.3. Data processing chain to perform a statistical analysis on the available time series.

A maximum covariance value (Pmax = l/e ~ max probability) is defined and just the
covariance-pixels lower than P.x were considered. This procedure allows retrieving an
Uncertainty Map (fig.4, a) that represents the reduction of the satellite uncertainly (error) in a
particular area.

The in situ observational resources were then adaptively distributed following the
variance-oriented criterion, to assign the best values of the in situ observed fields at grid points
of a regular grid coincident with the centres of satellite pixels. We define an Impact Map as the
result of the merging between an in situ (with hypothetic latitude longitude position) and the
Uncertainty Map.

As showed in fig.4, b, ¢ the Impact Map depends on the in situ position. In order to have
number that represents this variation, we have defined an Impact Index that takes into account of
the effective error reduction (due to the in sifu) in a fixed area. In particular, we define an Image
retrieved from the difference between the Uncertainty Map (fig.5), we consider a box-area
(10x10 km) around the in situ (A pixels) and we fix a threshold (B) with the following value:

B = Uncertalnty_map(lonin situ 2 latin situ )_ 3GSatelliteierror .

If N represents the number of pixels >B, the Impact Index can be defined as N/A*100.
Knowing the Impact Index of each possible in sifu location allows one to identify which is the
best placement in terms of Cal/Val activities.

Conclusion. We have presented a procedure for merging satellite data with in situ
measurements to increase the quality of satellite derived products. This methodology is used to
define the location where in situ data should be collected in order to determine the uncertainty
of using these data for calibration and validation of satellite products. Satellite products include
Sea Surface Temperature, Ocean Color products of water leaving radiance, chlorophyll,
inherent and apparent properties (retrieved from AVHRR and MODIS satellite sensors). In situ
measurements can be obtained from moorings (such as AErosol RObotic NETwork-
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AERONET and/or Marine Optical Buoy-MOBY), from ships or from autonomous vehicles
(such as Autonomous Underwater vehicle and/or Gliders).

Lalilude

01

1285

5 12
Longitisde Longitude

Fig.4. Uncertainty Index map (a); Impact Index Map merging with an in situ placed in a low uncertainty
area (43.325N and 12.583E) (b); Impact Index Map merging with an in sifu in placed in a low
uncertainty area (43.325N and 12.583E) (¢).
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Fig.5. Image Difference and Impact Index merging with an in situ placed in a low uncertainty area

(43.325N and 12.583E) (a); Image Difference and Impact Index merging with an in situ placed in a
high uncertainty area (43.325N and 12.583E) (b).

We also present results using MODIS time-series images and AERONET-OC in the Ven-
ice (Acqua Alta) site. The covariance matrix of the time-series was used in a Bayesian
framework to estimate the best in situ location for Cal/Val efforts using a Simulated Anealling
Algorithm. In particular, the covariance has been evaluated using the available monthly time-
series MODIS acquisitions from 2005 to 2009. The resulting Historical Maps have been used
to calibrate in situ data position without satellite acquisitions but taking into account on the
“satellite statistical behaviour”.
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