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the surface to the sensor depth) from validated glider Ed data and (3) to invert mean K's to local K's (K over 
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СПУТНИКОВЫЙ МЕТОД, ОСНОВАННЫЙ НА КОВАРИАЦИИ, 
ДЛЯ ПОДДЕРЖКИ ДЕЯТЕЛЬНОСТИ АЭРОНЕТ –  
ВЕРИФИКАЦИЯ ДАННЫХ ПО ЦВЕТУ ОКЕАНА  

 
 

Цель работы – определить места в исследуемой области океана, где натурные измере-
ния для калибровки/верификации (Cal/Val) в течение различных периодов времени 
обеспечивают наибольшее улучшение радиометрической точности и достоверности 
результатов, получаемых по спутниковым данным. Представлен метод объединения 
спутниковых изображений с данными натурных измерений и выработки наилучшей 
стратегии проведения натурных измерений, подходящей для проведения спутниковой 
калибровки/верификации. Эта методология использует спутниковые данные, чтобы 
построить ковариационную матрицу, содержащую информацию о пространственно-
временнóй изменчивости в исследуемой области. Ковариационная матрица использу-
ется в Байесовском методе для объединения спутниковых и натурных данных и созда-
ния продукта с наименьшими ошибками. Наилучшее место для калибров-
ки/верификации находится с помощью метода оптимального планирования (А-
оптимальный план), который минимизирует расчетную дисперсию объединенного 
продукта. 

 
Ключевые слова: спутниковые изображения, натурные измерения, калибровка/верификация, объединен-

ный продукт. 
 
 
With the increasing availability of satellite time-series imagery of sea surface temperature 

(SST) and ocean color (e.g. from Moderate Advanced Very High Resolution Radiometer-
MODIS), it has become possible to monitor temporal and spatial variation of coastal and open 
waters. These data improve our view of the ocean when compared to the very limited spatial 
sampling offered by in situ observations (e.g. ships and moorings). Generally, merging remote 
sensing data with in situ measurements has become a standard procedure to increase the quality 
of satellite derived products. Conventionally, covariance analysis is applied to oceanographic and 
meteorological data sets to decompose space and time distributed data into modes ranked by their 
temporal variance, while optimum sampling analysis is applied to find adequate number and 
allocation of in situ data to improve satellite quality by reducing the overall observational error. 
In this paper, different fields needed for implementing such concepts are studied and presented. 

These methodologies were implemented on several available data sets (e.g. using satellite 
MODIS time series and optical in situ platform, such as the AErosol RObotic NETwork – 
AERONET and the Marine Optical Buoy-MOBY platforms). 

Methods. Theoretical Approach. Time series of satellite images can be employed to 
build a covariance matrix encoding the spatio-temporal variability of an area of interest. In situ 
observational resources can then be adaptively distributed following a covariance-oriented cri-
terion, to assign the best value of the in situ observed field at grid points of a regular grid coin-
cident with the centers of satellite pixels. The best in situ location can be found implementing 
optimum design procedure, such as A-optimum design.  

Covariance – Consider a generic time-series ( ){ }N
iityx 1,, =ψ  measured from satellite with a 

given observational error. The dataset is a three-dimensional grid that depends on longitude (x), 
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latitude (y) and time (t). Alternatively, this gridded data can be reshaped into a two-
dimensional grid of M rows by N columns: 

),( MNTTNM ≡ ,                                                              

where M represents the number of spatially distributed points (the product of x by y) and N 
represents the number of points over time (t). Using this representation, the covariance matrix 
(C) can be numerically evaluated by multiplying T by its transpose: 

NMNM TTC ⋅∝ )'( .                                                              

Because the covariance matrix C is derived from satellite observations, it will contain contri-
butions from the sensor noise ( 2

satσ ). For this reason we have studied a methodology to remove the 
impact of the sensor noise (supposing that 2

satσ  is known a priori) on the covariance matrix. To 
achieve this, we have decomposed C in two orthogonal matrixes that verify the following equation: 

DVVC ⋅=⋅ .                                                                (1) 

These matrices are the eigenvalues (D) and eigenvectors (V) of C; in particular, D is the 
canonical form of C (a diagonal matrix with C's eigenvalues on the main diagonal), while V is 
the modal matrix (its columns are the eigenvectors of C). Assuming the sensor noise as a white 
noise stochastic process, its impact on the covariance matrix C is limited to the diagonal terms. 
These characteristics make it possible to remove the sensor noise by using the eigenvalues of 
C; therefore the matrix D will be modified as follow: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ
−= I

M
DD sat

2

,                                                             

where I is the MXM identity matrix. Finally, replacing the negative eigenvalues with zeros, the 
new covariance matrix can be evaluated using the formula: 

'VDVC = .                                                                  (2) 

Merging procedure – Merging remote sensing data with in situ measurement is a 
standard procedure that allows increasing the quality of the satellite-derived products. The idea 
is to study the spatial-temporal variability of the satellite data and to distribute the in situ 
sample over the image following the covariance criterion. Therefore, once the covariance C has 
been obtained from eq.(2), a new field, merging in situ and satellite data, is retrieved maximiz-
ing the following probability distribution: 

1 1( ) exp[ ( ) ( ) ( ) ( )]T T
K obs k obs K K Kobs

P H H C− −ψ ∝ − ψ − ψ ψ − ψ − ψ − ψ ψ − ψ∑                       

Where Kψ  represents the vector of pixel values, obsψ  is the observation vector, H is the observa-
tion matrix, ∑obs

is the observation error matrix and ψ  is the average field. The first part in the 
exponential represents the likelihood density while the second product of matrices represents the 
a priori probability. The merging procedure is performed maximizing the a posteriori probability 
distribution; therefore the best estimation is represented by the field mergedψ  that verifies: 

( ) ( ) ( ) ( )( )ψ−ψψ−ψ−ψ−ψψ−ψ=ψ −−∑ k
T

kobs kobs
T

kobsmerged CHH
k

11

ψ
minarg .             (3) 

The solution of eq.(3) represents the merged image, fig.1 show an example of merging 
using SST AVHRR image and an in situ track. 

Optimum design and Uncertainty Index – Sampling strategies of in situ observational re-
sources driven by a design principle called A-optimality could substantially improve the accu-
racy of the final blended products. The scope of A-optimal designs is to minimize the variance 
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of the estimated field with respect the sample locations. This optimal criterion will select loca-
tions in regions with low uncertainty and large spatial representation. Like other standard vari-
ance-oriented criteria in optimal experimental design, a covariance model must be known a 
priori. In situ observational resources could be adaptively distributed following the variance-
oriented criterion, to assign the best values of the in situ observed fields at grid points of a reg-
ular grid coincident with the center of satellite pixels. This procedure would ensure the opti-
mality of merged products for limited in situ observational resources on the basis of an Uncer-
tainty Index (UI). The implementation of this technique was initially performed using a Ge-
netic Algorithm (GA) that minimizes the process of natural evolution. This algorithm is itera-
tively used to search the best in situ position minimizing the variance of the retrieved solutions. 
The optimization problem was also investigate using a Simulated annealing (SA) strategy that 
is a generic probabilistic metaheuristic for the global optimization problem of locating a good 
approximation to the global optimum of a given function in a large search space. The retrieved 
optimization results from GA and from SA are comparable; therefore the SA method results 
more efficient in term of computation (faster) than GA. 

 
a            b 

                    
Fig.1. AVHRR SST image and in situ ship data (black dots) – a; colored circles display the field  

resulting from merging ship and satellite observations of the sea surface temperature – b. 
 

Results. Implementation of the procedures described above focuses on the AErosol 
RObotic NETwork (AERONET) sites. AERONET program is a federation of ground-based 
remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and 
other national collaborators. The program provides a long-term, continuous and readily 
accessible public domain database of aerosol optical, mircrophysical and radiative properties 
for aerosol research and characterization, validation of satellite retrievals, and synergism with 
other databases [3, 4]. In particular we focus the attention on the Venice Acqua Alta 
AERONET site that is located 13 KM of the cost of the Venetian lagoon (as in fig.2).  

 

 
 

Fig.2. The northern-East Italy coast region, showing the location of the AERONET site. 
 

To evaluate the AERONET in situ position in terms of uncertainly we have implemented the 
proposed procedure on monthly satellite time-series that have been retrieved using several Moder-
ate Advanced Very High Resolution Radiometer (MODIS) images acquired on the area of interest 
with 1 km at nadir of ground resolution. In particular we have performed the following steps. 

Monthly time series have been created using about two acquisitions per days during the 
period from January 2005 to December 2009, for a total of 2135 images. All the «clear» im-
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ages (438) were processed focusing the attention on a box area of 30 by 30 km around the 
AERONET site (this size was fixed for the convenience of computation and analysis). Each 
monthly time series were arranged into a two-dimensional array T(x, t), where x and t are the 
spatial and temporal indices. Because the data retrieved from MODIS are much more dense in 
space than in time (x>>t), the covariance matrix was evaluated implementing eq.(1) for each 
month. To represent the monthly statistic analysis we have evaluate the mean of each time se-
ries and we also define a «Historical Covariance Map» (CHIST) that represents the pixel stan-
dard deviation of considered time-series, as resumed in fig.3. Using this technique we produce 
twelve CHIST that have been used to calibrate in situ data without satellite acquisitions but tak-
ing into account an «satellite statistical behavior». 

 

 

 

 

 

 

 

 

Fig.3. Data processing chain to perform a statistical analysis on the available time series. 
 

A maximum covariance value (Pmax = 1/e ~ max probability) is defined and just the 
covariance-pixels lower than Pmax were considered. This procedure allows retrieving an 
Uncertainty Map (fig.4, a) that represents the reduction of the satellite uncertainly (error) in a 
particular area.  

The in situ observational resources were then adaptively distributed following the 
variance-oriented criterion, to assign the best values of the in situ observed fields at grid points 
of a regular grid coincident with the centres of satellite pixels. We define an Impact Map as the 
result of the merging between an in situ (with hypothetic latitude longitude position) and the 
Uncertainty Map. 

As showed in fig.4, b, c the Impact Map depends on the in situ position. In order to have 
number that represents this variation, we have defined an Impact Index that takes into account of 
the effective error reduction (due to the in situ) in a fixed area. In particular, we define an Image 
retrieved from the difference between the Uncertainty Map (fig.5), we consider a box-area 
(10×10 km) around the in situ (A pixels) and we fix a threshold (B) with the following value: 

( ) errorSatellite_situin situin 3lat,lony_mapUncertaintB σ−= .                           

If N represents the number of pixels >B, the Impact Index can be defined as N/A*100. 
Knowing the Impact Index of each possible in situ location allows one to identify which is the 
best placement in terms of Cal/Val activities. 

Conclusion. We have presented a procedure for merging satellite data with in situ 
measurements to increase the quality of satellite derived products. This methodology is used to 
define the location where in situ data should be collected in order to determine the uncertainty 
of using these data for calibration and validation of satellite products. Satellite products include 
Sea Surface Temperature, Ocean Color products of water leaving radiance, chlorophyll, 
inherent and apparent properties (retrieved from AVHRR and MODIS satellite sensors). In situ 
measurements can be obtained from moorings (such as AErosol RObotic NETwork-

MONTHLY STATISTIC ANALYSIS (an example from July):  
   
    Historical Map 
   
 

Time-series mean 

Covariance (diag) 
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AERONET and/or Marine Optical Buoy-MOBY), from ships or from autonomous vehicles 
(such as Autonomous Underwater vehicle and/or Gliders). 

 
a       b        c 

 
Fig.4. Uncertainty Index map (a); Impact Index Map merging with an in situ placed in a low uncertainty 

area (43.325N and 12.583E) (b); Impact Index Map merging with an in situ in placed in a low 
uncertainty area (43.325N and 12.583E) (c). 

 
a       b 

 
Fig.5. Image Difference and Impact Index merging with an in situ placed in a low uncertainty area 
(43.325N and 12.583E) (a); Image Difference and Impact Index merging with an in situ placed in a 

high uncertainty area (43.325N and 12.583E) (b). 
 

We also present results using MODIS time-series images and AERONET-OC in the Ven-
ice (Acqua Alta) site. The covariance matrix of the time-series was used in a Bayesian 
framework to estimate the best in situ location for Cal/Val efforts using a Simulated Anealling 
Algorithm. In particular, the covariance has been evaluated using the available monthly time-
series MODIS acquisitions from 2005 to 2009. The resulting Historical Maps have been used 
to calibrate in situ data position without satellite acquisitions but taking into account on the 
“satellite statistical behaviour”. 

We express special thanks to the Naval Research Laboratory, Stennis Space Center (NRL-SSC) for support to 
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