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ured. These data were used to test the model of the absorption properties of phytoplankton, derived by Bricaud
et al. for case 1 oceanic waters (hereafter referred to as Bricaud's parameterisation), to predict the spectra of
light absorption by phytoplankton a,, for lakes in Pomerania. This study shows the limitations of this model to
lacustrine phytoplankton; and the reasons for them are discussed. In addition, an analogous model of light ab-
sorption by phytoplankton in the investigated lakes was derived on the same mathematical basis as Bricaud's
model, but with different values of the relevant empirical parameters. For the sake of simplicity, the analysis
covered the coefficients of light absorption only by surface water phytoplankton. The results were compared
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The objective is to determine the location(s) in any given oceanic area during different temporal periods where
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radiometric and derived product data (lowest uncertainties). A method is presented to merge satellite imagery
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This methodology uses satellite acquisitions to build a covariance matrix encoding the spatio-temporal vari-
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Results of researches of spatial correlation of atmosphere optical heterogeneities above the Black sea are pre-
sented. Measurements of aerosol optical thickness are carried out by two spaced sun photometers. The spatial
correlation radius of aerosol optical thickness is estimated and constitutes in order of 160 km. Possibility of
revealing the absorbing aerosols properties above the sea is shown on a concrete examples. The recommenda-
tions on application of portable photometers in sub-satellite measured experiments are given.
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Levin I., Darecki.M., Sagan S., Kowalczuk P., Zdun A., Radomyslskaya T., Rodionov M. Can the

Commonly used optical models of natural waters have been analyzed in the context of their applicability in the
Baltic Sea. By use of a large data set collected at the Baltic, we found that published before relationships be-
tween scattering, attenuation and backscattering coefficients at wavelength 550 nm in ocean waters are valid
for Baltic as well. When the same data were used for validation of the relationships connecting absorption and
scattering coefficients of the chlorophyll and absorption coefficients of Colored Dissolved Organic Matter
(CDOM) with chlorophyll concentration, the result shows a large discrepancy, disqualifying them in the com-
plicated environment of the Baltic Sea.
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This study defines hydrodynamic characteristics of underwater gliders based upon numeric solution of Rey-
nolds-averaged Navier-Stokes equation. The characteristics were compared with experimental data and it was
shown that it is possible to use numeric methods of viscous fluid dynamics for development of a shape of such
objects. Mathematical model of glider's motion was designed. Feasibility of its use as a towing vehicle for
another underwater object was studied. Analytical estimations of glider motion parameters were obtained at
steady-state modes with and without account of towing force.
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BEPUDOUKALIUA BTOPUYHBIX OIITUYECKUX XAPAKTEPUCTHK,
BOCCTAHABJIMBAEMBIX IINTAHEPAMMU CJIOKAMA

OnHO M3 NPUHIMIHATIBHBIX PEUMYLIECTB IUIAHEPOB — 00ECIIeYeHNEe MU U3MEPEHHH C BBICO-
KM pa3pelIeHHeM B MaJIBIX BPEMEHHBIX U MPOCTPAHCTBEHHBIX Macmtabax. OHM aBTOHOMHO
paboTaroT 24 4 B CyTKH 7 JHEH B HENEIIO NPH JII000H Morosie 1 JItoOOM COCTOSIHHU MODS, YBe-
JIMYMBAIOT KOJIMYECTBO U3MEPEHHUIT B CYTKH (CYIOBBIE H3MepeHHs obecrieunBaroT 87 npoduiei
B JICHB, a IUTaHephl — 665), OTHOCUTENBHO ACIIEBHI, JIETKO MEepPeMEIaloTcsl i, HakoHel, Tpedy-
I0T MJIBIX 3aTPaT MOLIHOCTH B TEYEHHE JUTUTEIIFHOTO BPEMEHH. 3aJadyl JaHHOTO HCCIIeoBa-
Hust: 1) HAWTH paguoOMETPHYIECKYIO HEOIIPEACICHHOCTh N3MEPEHNI HUCXOMAIIEH 00IydeHHO-
ctu (E,;) ¢ manepa; 2) NPUMEHHUTh METOAWKY IOABOIHOTO IMCTAHIIMOHHOTO 30HIMPOBAHHUS
JUTSL BBIYKCIICHUS] CPEAHETo Kod(duIMeHTa BepTHKILHOrO ocnabnenust K (yCcpeJHeHHBIH 110
HEKOTOPOMY MHTEpBaly IIyOHUH OT HETOCPEACTBEHHO IO MTOBEPXHOCTHIO JIO TIIYOUHBI pacro-
JIOKCHUS TPUEMHUKaA CBeTa) Ha OCHOBaHUM MOATBEPKIACHHBIX JaHHBIX 06 N3MCPCHHBIX ITJIaHEC-
pom E; 3) mpeoOpaszoBarh cpenune K B JlokasbHBIE (T.€. B K 171 MaIbIX NpHpanieHui TIyOuH
0K0JI0 1—2 M), YTOOBI CreHepHpOBaTh BEPTUKAIBHBIA Mpoduinb K NpH pa3IMuHbIX MaJarolmx
TIOTOKaX M3JydeHus (pa3nudHble arMocepHbIe U 00NaYHbIe YCIIOBHS).

Ki1roueBble c10Ba: aBTOHOMHBIC IJIaHCPBI, TOABOAHAA 06J'Iy‘ICHHOCTB, I10Ka3aTeciib Z[H(b(byBHOFO ocia0ieHus.

Slocum Gliders — a slocum glider is long-duration autonomous underwater vehicle manu-
factured by Webb Research Corporation (http://www.webbresearch.com/). It moves up and
down in the water column by changing the buoyancy; using wings and control surfaces to con-
vert the vertical velocity into forward velocity so that it glides downward (dives) when denser
than water and glides upward (climbs) when buoyant. The pitch-angle is set in software and
adjusted internally by changes in buoyancy and a movable battery pack that shifts the center of
gravity with respect to the center of buoyancy. During flight they are continuously executing a
dive-and-climb sequence (also called a ‘yo’). The optimal dive (or climb) angle is —26 or +26
degrees to the horizontal. The glider surfaces at regular intervals to collect a GPS position,
communicate its data to shore via Iridium or Freewave, and download new instruc-
tions/missions. The specifications of the Slocum Coastal glider can be found below.

Slocum Coastal Glider Specifications:

size — 52 kg and length — 1.8m;

speed — 0.35 m s™ horizontal and 0.2 m s™ vertical;

range — 25-40 days or 600-1,500 km; Depth — 0-200 m;

energy — C-cell alkaline;

navigation — GPS, dead-reckoning, compass, pressure, transducer and altimeter;

communication — Iridium and RF (Freewave).

Glider Sensors — NURC has seven Slocum gliders that have science-payloads in which a
variety of sensors have been installed. All Slocum gliders come with a non-pumped low-drag
Sea-Bird CTD (SBE—41). The focus of this study is on the radiometric sensor (Satlantic; OCR—
5041), which measure downwelling irradiance (E;) at four wavelengths (412, 444, 491 and
555 nm). The OCR 500 series radiometers are fully digital optical sensors (multi-spectral
radiometers) that have a fully characterized cosine response with low fluorescence filters.
Some of the other optical sensors that can be deployed on the gliders are bb3 (a single-angle
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sensor, 117°, for measuring optical backscattering at 470, 532 and 670 nm [1] by WETLabs,
ECO Series), bb2f (the ECO Triplet measures optical backscattering at one wavelength,
532 nm) and chlorophyll and CDOM fluorescence by WetLabs) and BAM (a beam attenuation
meter specifically designed for AUVs by WetLabs; 532 nm).

It’s important to note that the OCR sensor is a plane radiometer; therefore the best
measurements are made when it is parallel to the sea surface. Fig.1 shows a Slocum in at the
surface with an Ed sensor which has been mounted in a 21° inclination angle. This means that
the radiometer was designed for optimal sampling on the up-cast (the climb) direction, as
confirmed from fig.2 that represents the downwelling irradiances (log scale) retrieved from a
typical virtual mooring glider mission.

21> Tnclination Anale

Fig.2. Downwelling irradiance (555 nm) from
a virtual mooring glider mission. There is
Fig.1. Slocum Coastal Glider equipped with a difference between down- and up-casts due
an irradiance sensor (OCR-504I). to the sensor orientation.

Submerged Remote Sensing Technique — In the early 1980's a novel approach was proposed
at the Visibility Laboratory, Scripps Institution of Oceanography, to separate the transmis-
sion/attenuation of the atmosphere from the water component by measuring some E4 at some
fixed depth. This was developed under the Submarine Laser Communication (SLC) program and
was later named the Submerged Remote Sensing technique [2]. The approach was to make mea-
surements at two wavelengths and use these measurements in a set of equations, which could be
solved for the separate attenuations. The technique requires the absolute measurements of £, at
two wavelengths and knowledge of the date, time, location and depth of these measurements. In
2009, the SRS technique was reviewed, implemented and then tested against a much larger opti-
cal database [3]. The RMSE difference between the modeled (SRS) and measured mean inte-
grated K (three oceanic basin; n = 1.613) was =
0.0063 m™ and these results were very similar
to those found [2]. For their study they used
irradiance profiles collected in the North At-
lantic for depths ranging from 20 to 120 m,
K(490) ranging from 0.03 to 0.4 m™ and at-
mospheric conditions from 100 % overcast,
broken cumulus, haze to clear sky. So the SRS

=]

=]

Pitch angle [degrees]

technique calculates mean K [K4A, z) = -1/z 7 RV S -
In(EAN, z)/EA\, 0)] without measurement of ¥ : ! : :
E; or the requirement that it remains constant 30 i i i i L
. . 1 200 400 600 800 1000 1200
during deployment (estimates of Ksgs are not Time

dependent on cloud cover or the angle of inci-
dence on the sensor, glider up- versus down-
cast). This makes the SRS technique a very
powerful tool for converting downwelling ir-
radiances measured from gliders or towed ve-

Fig.3. Glider pitch angle as a function of time
during the BP'09 cruise in the Ligurian Sea. The
red and green shaded areas represent the up- and
down-casts. The best time for irradiance meas-
urements is the red shaded area.
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hicles to water clarity or diffuse attenuation coefficients.

Methods. Data validation of the absolute downwelling irradiance was performed consid-
ering only the up-cast data in which the glider has the proper pitch angle (~26 deg) so that the
radiometer is parallel to the sea surface. It’s also important to understand some general glider
flight characteristics. In particular, one must take into account that, typically, a glider takes
about 4-5 minutes to achieve the desired pitch angle (~26 deg), as showed in fig.3, therefore
the data close to a glider changing inflection (from down-cast to up-cast, or vice versa) cannot
be included in the data validation analysis.

To validate E£; measurements made from Slocum gliders, data was selected from two sep-
arate gliders (Elettra and Sophie) and compared to data collected from a highly calibrated hy-
perspectral radiometer (HyperPRO II). The HyperPRO II has a spectral range from 305-1,100
nm, spectral sampling at 3.3 nm pixel™, spectral accuracy of 0.3 nm, spectral resolution of 10
nm, and stay light of <1x107. The cosine response for irradiance is 3 % @ 0-60° and 10 % @
60—85°. This radiometer is a calibration quality instrument in which stray has been determined
and additional calibration procedures performed. For the glider data a virtual mooring mission
was programmed so that the glider made multiple up- and down-casts (~20) covering a small
horizontal distance (~1 km). These comparisons (fig.4) can be considered reliable if they sat-
isfy the following conditions; 1) the glider and HyperPRO II measurements have to be per-
formed simultaneously (same day and close in time for a similar solar zenith angle); 2) the
measurements have to be performed in homogeneous areas; 3) the glider tracks have to be de-
signed so that they can be processed as a single cast like the HyperPRO II profile.

Up-cast profiles of duwrmilmg irradnancz_ Ed, at 490.9 nm HyparPRO profile of downwelling iradiance, Ed, at 430.9 nm
o 22 T
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Fig.4. Downwelling irradiance [Ed(491)] from up-casts during a virtual mooring glider mission
on 21 Aug 2010 (Left panel; 8.00-13.00 UTC) compared with a HyperPRO II cast
(Right panel; ~12:00 UTC in the Ligurian Sea during BP'09 Cr).

Results. Fig.5 shows that with a minimal amount of quality control and quality assurance
(QC/QA) validation quality radiometric data [E4(A)] can be obtained from Slocum gliders even
though the angle of the E; sensor changes between up- and down-casts and there might be
some stability issues during profiling. The most critical requirement is that the £, sensors are
rigorously calibrated before and after each cruise/deployment.

Most optical sensors on autonomous underwater vehicles, gliders and moorings measure
the inherent optical properties (IOPs; absorption, scattering and attenuation) because daytime
illumination differences (clouds, aerosols, etc) do not affect IOP measurements as they are di-
rectly related to in-water properties. IOPs are also not sensitive to vehicle orientation as AOPs,
like E;. Currently, to calculate the diffuse attenuation coefficient (K) from E,, the surface ir-
radiance [Es(A)] must be measured, if variable, or remain constant during the deployment of the
radiometer. Because of this requirement, the utility of £; measurements on gliders, which do
not have the capability to measure E; concurrently, has not been fully utilized.

28



Bepudukanusi BTOpHYHBIX ONTHYECKUX XaAPAKTEPUCTHK ...

We have taken glider data from a cruise in
the Ligurian Sea (BP'09) and using the SRS
technique calculated mean K and then converted
to local at each measurement depth interval
from ~7 to 95 m at varying and uneven depth
increments. The vertical profile is under sam-
pled when compared to the more standard high
sampling rates radiometers, like the HyperPRO
II. At these low sample densities, one should
expect the retrieved K's would be noisy because
there is no depth averaging and the near surface
(0-10 m) wave focusing and defocusing. The
results shown in fig.6 do not show this type of
variability and uncertainty and both up- and
down-casts were used in the analyses. The de-
part from a parallel orientation to the sea surface

25 P
#® 411 rmse = 0050637 : : : |
® 143 rmsa = 00G1976 ; ; ;
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Sophie Ed, 21 Aug virtual mooring from 10:15 UTC -13.38 UTC
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HyperPRO Ed, 21 Aug, 13:10 UTC

Fig.5. Comparison of downwelling irradiance
from a HyperPRO II versus glider data
collected on 21 Aug (Sophie glider, left
panel).

during the down-casts and turning points near the surface and at the bottom of the up- and down-
cast does not seem to affect the results. This makes sense in that the SRS is insensitivity to
changes in illumination caused by cloud conditions and as shown here the orientation away from
the horizontal.

K from SRS 02
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Fig.6. Local K(491) calculated from Elettra glider using the SRS technique to include up- and down-
casts (left panel). Vertical profiles K(491) (right panel) from first down-cast of Elettra glider using SRS
(black diamonds), K(491) from Elettra glider using only £,(491) (red line) and K(491)
from HyperPRO II profile using one meter binned £,(491).

Conclusions. The downwelling irradiance measured on glider platforms, if extensively
calibrated, can be used to retrieve local K(490) using the SRS technique. Advantages of this
approach is that the incident solar flux does not have to be measured, it works under varying
cloud and atmospheric conditions, near surface focusing and defocusing caused by waves does
not affect the results, there is no requirement for high density collection of downwelling irradi-
ance and the depth binning (10 to 20 m) of the data to improve retrieval of Ks is not required.
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