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МОДЕЛИРОВАНИЕ СОХРАНЕНИЯ ЭНЕРГИИ  

В ПОЛНОСТЬЮ ИНТЕГРИРУЕМОЙ СИСТЕМЕ БУССИНЕСКА 

 

 
Представлен вывод плотности энергии и потока энергии морских волн в рамках моде-

ли Каупа, являющейся одним из вариантов системы Буссинеска. Этот вывод основан 

на процедуре восстановления поля скорости и давления в объеме жидкости под сво-

бодной поверхностью, обобщающей метод, ранее предложенный авторами. Показано, 

что полная волновая энергия совпадает с гамильтонианом, представленным В.Крейгом 

и М.Грувсом. 
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The object of this note is the derivation of expressions for the energy density and the 

energy flux associated to an integrable system of evolution equations modeling the propagation 

of weakly nonlinear long waves on the surface of an incompressible, inviscid fluid. In particu-

lar, the focus is on the so-called Kaup system 
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where ε(x, t) describes the displacement of the free surface from the rest position at a point x 

and time t, ),(ω tx is the horizontal velocity of the fluid at the free surface, g represents the gra-

vitational acceleration, and 0h  denotes the undisturbed depth of the fluid. 

The Kaup system belongs to the family of long-wave models developed by Boussinesq 

[3], extended by Peregrine [4] and Nwogu [5], and represents a special case of the general sys-

tem of long-wave models derived recently in [6]. These models describe the propagation of 

surface gravity waves of small amplitude and long wavelength in a horizontal channel of uni-

form depth, and under the assumption that the flow is irrotational, and essentially two-

dimensional. Even though this system is not well posed in the Hadamard sense [7], it is impor-

tant because it has an integrable Hamiltonian structure [8]. Moreover, (1) appears naturally 

when the derivation of the long-wave system is based on approximating the Hamiltonian func-

tion of the full surface water-wave problem. As explained in detail in [2], this formulation is 

given in terms of the evaluation of the velocity potential at the free surface, and relies on the 

Hamiltonian structure of the full water wave problem found by Zakharov [9]. A version of this 

system also appears in the context of interfacial waves if it is required that an approximate 

Hamiltonian function be conserved [10]. In the context of surface waves, the Hamiltonian 

function is given by 
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and the system (1) is the corresponding Hamiltonian dynamical system.  As shown in [8], the 

system (1) is actually a completely integrable dynamical system. 

Since the derivation of (1) presented in [2] is based on approximating the total energy of 

the fluid system governed by the Euler equations, the integral (2) appears naturally as the total 

energy of the system in the approximation leading to (1). On the other hand, for some purposes 

it can also be of value to have knowledge of the energy contained in a smaller section of the 

fluid, and in particular of the local energy flux. These quantities can be important in various 

situations of practical significance, such as the modeling of tsunamis [11], undular bores [12, 

13], and in the analysis of shoaling waves [14]. It is the purpose of the present paper to shed 

light on the conservation of energy in the context of the Kaup system, and to provide expres-

sions for the local energy flux and density in terms of a solution ε, ω  of (1). 

The derivation of Boussinesq models for surface water waves is based on the assumption 

that there is an approximate balance between nonlinear steepening effects and dispersive 

spreading [6, 12]. Supposing that a  is a representative amplitude, and ℓ represents a dominant 

wavelength, the Boussinesq scaling regime describes waves for which the two small parame-

ters 1/α 0  ha  and 1/ 22
0  h

 
are approximately equal. The system (1) consists of an 

approximate mass balance equation (first equation), and an approximate horizontal momentum 

balance equation (second equation), and is obtained by neglecting terms of order αβ  and β
2
. In 

order to obtain a corresponding approximation for the energy density E and energy flux Eq , 

one may stipulate that the differential energy balance equation 
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hold to the same order in α and β as the evolution equations. 

A related development was presented in [15] for the single second-order Boussinesq equa-

tion. However, the expressions found in [15] are quite different from the formulas developed 

here, and the method is based on requiring exact energy conservation instead of approximate 

conservation. In [1], a method was developed to derive mass, momentum and energy densities 

and fluxes associated to the family of Boussinesq systems found in [6]. The expressions were 

then compared to the corresponding quantities in the shallow-water theory. In the present note, 

we use the same method, but a different definition for the potential energy in order to show that 

the Hamiltonian function associated to (1) represents exactly the total energy of the system. We 

expect that similar considerations will yield information about the energy density and flux for 

internal waves modeled by the Kaup equation [10], but the details have not been carried out yet. 

Preliminaries. The surface water-wave problem is generally described by the Euler eq-

uations with no-flow conditions at the bottom, and kinematic and dynamic boundary conditions 

at the free surface. Since the fluid is incompressible and the flow is assumed irrotational, the 

problem may be formulated in terms of the velocity potential φ(x, z, t) and the surface elevation 

ε(x, t). The pressure is eliminated with help of the Bernoulli equation, the potential φ satisfies 

Laplace’s equation, and the free-surface boundary conditions are formulated in terms of the 

potential and the surface excursion by  
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To set the stage for approximating the energy density and flux, we briefly recall the deri-

vation of the Kaup system. In order to identify the relevant terms in the equations, the variables 

are non-dimensionalized in the following way: 
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where 00 ghc  . The free-surface boundary conditions then take the form 
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The standard approach consists of developing the potential θ  in an asymptotic series, 

and using the Laplace equation and Neumann boundary condition at the bottom to write the 

non-dimensional velocity potential θ~  in the form 
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Substituting this expression into the second boundary condition at the free surface yields 

the relation 
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To find a closed system of two evolution equations, we insert the asymptotic expression for 

θ~ in the first equation in (3), and collect all terms of zeroth and first order in α and β. Then, we 

diferentiate (5), and express the equations in terms of the non-dimensional horizontal velocity 

at the bottom vf x
~

~  . This procedure yields the equations 
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Now if ω~  denotes the nondimensional velocity at a nondimensional height 1~ z  in the 

fluid column, then v~ may be expressed in terms of ω~  as 
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The schematic elucidates the geometric setup of the problem. The undisturbed water depth is 0h , and 

the x-axis is aligned with the free surface at rest. The free surface is described by a function ε(x, t). 

The figure shows a control interval delimited by 1x  and 2x  on the abscissa, and the arrows indicate 

pressure force FP and energy flux Eq . 
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Writing (6) in terms of ω~ , the Kaup system appears in the non-dimensional form 
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If terms of order )β,αβ( 2 are disregarded, and dimensional variables are used, the Kaup 

system (1) is recovered. 

As the aim here is to find expressions for the energy density and flux, it is essential to de-

rive an approximation for the pressure associated to the (1), and we follow the method laid 

down in [1]. With the help of the Bernoulli equation, the dynamic pressure can be written as 
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where atmospheric pressure has been set as the reference pressure, and ρ denotes the density of the 

fluid. Converting to non-dimensional variables, using the asymptotic expansion for the velocity 

potential (4), and using the identity (5), the second-order dynamic pressure emerges in the form 
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Converting to dimensional variables, it may be confirmed that this agrees with the ex-

pression for the pressure associated to the so-called «classical» Boussinesq system given in 

[16]. Similar considerations as in [1] were also used in [17] to derive the pressure associated to 

the Green-Naghdi system which models higher-order effects in surface waves. 

Energy balance. In order to derive the energy density and flux we consider the total me-

chanical energy inside a control volume in the fluid and above the interval [x1, x2], as shown in 

Fig.1. The total energy in this control volume is 
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where the first term represents the kinetic energy, and the second term the potential energy. 

The potential energy has been normalized in such a way that a particle located at the level of 

the undisturbed free surface has zero potential energy, and such that the total potential energy 

is zero when no wave motion is present. Following [18], conservation of total mechanical 

energy is written as 
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We convert to non-dimensional variables, and compute the left and right hand sides indi-

vidually. Substituting the expressions for x~θ~  and z~θ~ , recalling that vf x
~~

~  is the velocity at the 

bottom, and using (7), there appears 
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After integrating and using the substitution for xf ~

~
, the energy flux and work done by the 

pressure force on the right hand side of the energy balance reduce to 
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Thus the energy balance equation transforms to 
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A differentiation in x finally yields the differential energy balance equation in the form 
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Taking the appropriate terms in the energy density and flux in (8) which are of order zero 

or one in the differential energy balance (9), we find the non-dimensional energy density to be 
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The non-dimensional energy flux (corrected for the work done by pressure force) is given by 
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Using the natural scalings EchE
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00 EE qchq   the dimensional forms of the 

energy density and energy flux are obtained in the form 
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In particular, ),( txqE  gives the energy flux due to the wave motion at a point x and a time 

t. Integrating E(x, t) over an interval [x1, x2] yields the energy due to the wave motion in the 

control interval shown in Figure (1) at a time t, and to the same order of approximation as the 

system (1) is valid. If the surface disturbance is localized, so that ε and ω  decay to zero at 
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infinity, and the integration of E is taken over the entire real line, an integration by parts shows 

that the total energy is equal to the Hamiltonian function derived by Craig and Groves [2]: 

.),( dxtxEH 
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Conclusions. Using the method developed in [1], expressions for energy flux and density 

per unit span in the transverse direction have been found. These quantities are given in terms of 

the principal unknowns ε and ω  of the Boussinesq system. Integrating E over the real line 

shows that the total energy in this description is equal to the Hamiltonian function used by 

Craig and Groves [2]. This result may be viewed as a further validation of the method pre-

sented in [1]. We expect that similar considerations can be used to understand energy balances 

in internal wave models, such as in the equations studied in [10]. 
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