
ФУНДАМЕНТАЛЬНАЯ И ПРИКЛАДНАЯ ГИДРОФИЗИКА. 2013. Т.6, № 3 

 14 

УДК 551.466 

 
© Т.Геркема, 2013

 

Королевский институт морских исследований Нидерландов 

Royal Netherlands Institute for Sea Research, Texel, Netherlands 

gerk@nioz.nl 

 

 

РАСПРЕДЕЛЕНИЕ НАКЛОНОВ ПОДВОДНЫХ СКЛОНОВ  

В СВЯЗИ С КРИТИЧЕСКИМ ОТРАЖЕНИЕМ ВНУТРЕННИХ ВОЛН 

 

 
Рассматривается распределение наклонов батиметрии в океане в трехмерной поста-

новке. Рассчитаны крутизна наклонов и горизонтальная ориентация тангенциальных 

плоскостей. Рассматривается часть Атлантического океана, в которую включены 

инерционные широты суточных приливов. Выражение для критического отражения 

внутренних волн переписано с включением нетрадиционного эффекта Кориолиса. По-

казано, что вероятность критического отражения существенно увеличивается, если в 

наклонах дна учтена трехмерность по сравнению с расчетами по одной линии. 

 

Ключевые слова: внутренние волны, критические отражения, трехмерность рельефа дна, нетрадицион-

ный эффект Кориолиса. 

 

 

Internal waves in continuously stratified layers propagate in a beam-like manner, the an-

gle of which is dictated by the waves's frequency  , the latitude   and the local stratification N 

[1]. If they impinge on the ocean floor, they reflect from the bottom slope, preserving their an-

gle with the vertical. If the angle of energy propagation (i.e. group velocity) matches that of the 

bottom slope, one speaks of critical reflection. The reflected beam becomes then much narrow-

er, hence more intense. Such intensification has been shown to occur in the ocean [2]. Presum-

ably, this is accompanied by wave breaking, although no direct observational evidence has 

been reported on this. But how wide-spread is this phenomenon of critical reflection? In the 

internal-wave spectra, the low-frequency part predominates, which corresponds to small angles 

with the horizontal for energy propagation. It was investigated by [3] what the likelihood is of 

a match with bottom slopes. In particular, so-called non-traditional effects were taken into ac-

count; they are due to the (often neglected) horizontal component of the Earth's rotation vector. 

These effects become important in weakly stratified layers, such as in the deep ocean (for a re-

view of phenomena affected by the horizontal component, see [4]. 
Ref.[3] concluded that probabilities increase towards inertial latitudes, i.e. latitudes at 

which the wave's frequency matches the local “traditional” Coriolis parameter  sin2f  

(  being the Earth's angular velocity). The effect of including the non-traditional Coriolis 

component  cos2f  was shown to be dual: it increases the probability below the inertial 

latitude, but in the vicinity of the inertial latitude it decreases the probability.  

However, one point of the analysis in [3] needs further elaboration, namely the distribu-

tion of the steepness of bottom slopes. The distribution was based on just four sections (derived 

from a 1/30 topographic database, [5]). By using latitudinal or longitudinal sections, the three-

dimensional bathymetry was treated as if it were uniform in the other horizontal direction. One 

can argue a priori that this approach must produce a bias towards weak slopes: in a section, 

every time one crosses a maximum or minimum, the steepness is found to be zero, but in the 

full three-dimensional case a zero steepness is found only if it concurs with one in the other 

horizontal direction, making the probability lower. 
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It is the purpose of this paper to straighten out the previous weakness and to show how 

this changes the results. 

Bathymetry and slope-distribution. By way of example, we will consider a slice of the 

Atlantic Ocean, see Fig.1. The area covers the continental slopes on either side of the basin, but 

the dominant feature is the Mid-Atlantic Ridge, as is clear from the steepness shown in Fig.1, b. 

That steepness is calculated as follows. Let the bathymetry be given by ),( yxhz  , so 

that we can define 

0),(),,(  yxhzzyxf . 

The gradient is )1,/,/( yhxhf  , which is the vector normal to the surface 

0),,( zyxf , and hence normal to the bathymetry. From this gradient, we can infer three 

properties. First, its length 2/122 ]1)/()/[(  yhxhL . Second, if we take the inner prod-

uct with the vertical unit vector (0, 0, 1), we get L/1)cos(  . 

Here   is the angle between the gradient and the vertical, which is identical to the angle 

between the tangential plane and the horizontal. 

Hence, the steepness  , the tangent of that angle, is given by 

2/12 ]1[  L .                                                          (1) 

Finally, we can calculate the horizontal orientation of the tangential plane,  , as the angle 

between the zonal direction and the vector )/,/( yhxh  . This angle is shown in Fig.1, c. It 

follows predominantly the orientation of the Mid-Atlantic Ridge and the fracture zones per-

pendicular to it. 

We can now calculate the distribution of slopes for the entire area shown in Fig.1, see 

Fig.2. For comparison, we plot the typical distribution derived by [3] for longitudinal or latitu-

dinal sections (black line). As expected, the genuinely three-dimensional approach gives a 

smaller probability for the mildest slopes (i.e., lower than about 0.02), and a larger probability 

for steeper slopes. Particularly noticeable is the drop in probability for the very weakest slopes 

(lower than 0.001).  
 

 

 

 
 

Fig.1. A slice of the Atlantic Ocean, from a later version of the database of [5], at 1/60 resolution. 

a  the bathymetry (depth in km); b  the steepness  , derived with formula (1);  

c  the horizontal orientation  , in degrees. 
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Fig.2. The distribution of steepness   (grey), based on Fig.1, b, taking into account the full three-

dimensionality. For comparison, the distribution used by [3], based on sections along lines (black). 

 

We now use this new distribution to calculate the likelihood of critical reflection. 

Recapitulation of the criterion of criticality. The expression of criticality was derived 

by [3]. The situation considered is sketched in Fig.3: an incident ray hits the bathymetry, i.e. its 

tangential plane, which is oriented arbitrarily. The arrows indicate the direction of energy 

propagation. The problem is to calculate the direction of energy propagation of the reflected 

ray. This problem was solved as follows.  
Consider an incident internal wave of the form 

)(exp tmzlykxiw  , 

which upon reflection from a slope )sincos(  yxz  ( x  is the west-east coordinate, y  is 

south-north), yields an outgoing wave 

)(exp tMzLyKxiQW  . 

 

 
 

Fig.3. Sketch of an incident ray, impinging on an arbitrarily oriented slope, and the reflected ray. 
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Here, w  and W  denote vertical velocities, but the horizontal components can be similar-

ly expressed. The problem is to find MLKQ ,,,  as functions of mlk ,,  and , . The first re-

quirement is that of zero normal velocity at the slope; for this be fulfilled for all x and y , we 

must have 

 coscos MKmk ;  sinsin MLml . 

Furthermore, the incident wave has to satisfy the dispersion relation, 

02 222  DkCmBlmAl                                               (2) 

with 
222 ~

fNA  , ffB
~
 , 22  fC , and 22  ND  [1, 6]. Notice that the so-

called non-traditional component (i.e., f
~

) is included here. The reflected wave, with 

),,( MLK , similarly has to satisfy (2). 

Writing qmM  , the requirements allow us to solve q : 

]sin2)cos()sin([

)cos()sin(
222

22

CBDAm

mkDmlA
q




 .                              (3) 

Notice that this expression exhibits an asymmetry in the horizontal plane due to the pres-

ence of the non-traditional component f
~

. (If we would ignore it, setting 0
~
f , then DA   

and 0B  and, as a consequence, the dependence on the horizontal orientation   disappears.) 

In [3] demonstrate that critical reflection occurs if || q ; thus, the criterion is that the 

denominator in (3) has to vanish, whence  






22

2/1222

cossin

)]cossin()sin[(sin 

DA

DACBB
.                               (4) 

This is the non-traditional criterion for critical reflection. Remarkably, it depends on the 

horizontal orientation of the plane tangential to the bottom, but not on the horizontal orienta-

tion of the incident ray. 

Results. As an example we consider the band of diurnal tidal frequencies ),( 11 KO , 

whose inertial latitudes lie at 27.6 and 30.0N, respectively. 

The most interesting and most relevant case is that of weak stratification, so we consider 

only the value 4102 N rad/s (for examples with other values, we refer to [3]. It is the most 

interesting case because differences between traditional and non-traditional approaches are 

most conspicuous for weak stratification, and the most relevant one because near the deep-

ocean floor, where the reflection takes place, the stratification is weak. 

For any given orientation of the slope   and latitude  , we can translate the range of fre-

quencies ),( 11 KO  into a range of critical slopes ),(
11 KO  , using (4). For that range, we can cal-

culate the probability from the distribution shown in Fig.2. We can repeat this for all angles  , 

and take the average. (In principle, one could give a different weight to different angles, follow-

ing a distribution based on Fig.1, c. Such a distribution depends on the orientation of the mid-

ocean ridge. For simplicity, we here ignore that dependence and give all angles an equal weight.) 

The result is shown in Fig.4 for a range of latitudes. The probability based on the new 3D 

distribution is shown in black, together with the previous 2D results from [3] in grey. Clearly, 

the probability of critical reflection is now higher for all latitudes (both under the Traditional 

Approximation and in a non-traditional approach), except very close to the inertial latitude. 

The percentual increase compared to the previous 2D approach amounts to 119 % at 24N, and 

becomes steadily less towards the inertial latitude, until the increase turns into a decrease. 
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Fig.4. The probability of critical reflection for the range of diurnal tidal frequencies ),( 11 KO ,  

for a range of latitudes up to the inertial latitude of 1O . In grey, the results for the quasi-2D slope  

distribution adopted by [3]; in black, the new results based on a genuine 3D approach. For both 

cases, results from the non-traditional approach (NTA) are shown, as well as results with  

the traditional approximation (TA). 

 

The change with latitude can be explained by the fact that the rays are steeper at lower la-

titudes, falling in the range where the probability in Fig.2 has increased with respect to the pre-

vious 2D approach. Near the inertial latitude, on the other hand, rays tend to be more horizontal 

and are now less likely to meet a critical slope than in the previous 2D case. 

Conclusion. Although the findings obtained earlier by [3] remain qualitatively valid, a 

significant correction has been uncovered in relation to the calculation of the distribution of 

bottom slopes in the ocean, as illustrated in Fig.2. We have repeated the calculation for a more 

northerly area (not shown), with similar results. The upshot is that mild slopes are considerably 

less likely than a cross-sectional line would suggest. In other words, the fully three-

dimensional character of the bathymetry needs to be taken into account. 

I thank Victor Shrira and Louis Gostiaux for inspiring discussions on the subject of the distribution of ba-

thymetric slopes. 
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