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MOJIEJIM HEJIMHEWHBIX JJIMHHBIX BHYTPEHHUX BOJTH
BO BPAITAIOIEMCSA OKEAHE

H3BectHOEC YpaBHCHUA KopTeBera—/:[e BpH3a, NMPUMEHACMOC 1JIA OIMMCAaHUsA NJIMHHBIX
HEJIMHEWHBIX BHYTPEHHUX BOJH B MIPUCYTCTBUH BpaIICHUS 3eMIIH, 3aMEHAETCs ypaBHe-
HueM OCTpPOBCKOTo. 3/1€Ch MBI JaéM aCUMIITOTHYECKUI BBIBOJ 3TOTO YpaBHEHHMS, YUH-
ThIBasi (JOHOBOE CIABHIOBOC TCUCHUE U IUIOTHOCTHYIO CTpaTHU(HKAIHIO. 3aTeM 000011a-
€M 3Ty MOJeJb, YTOOBI yUeCTh FOPU30HTAIBHYIO0 HEOJAHOPOIHOCTh NMAapaMeTPOB CPEJIbI,
Y ONHKCHIBAaCM, KaK HauyaJIbHBIN coauTOH ypaBHeHus Kopresera-ne Bpuza nedopmupy-
€TCs M M3JTy4aeT HHEPIIMOHHO-TPaBUTAIMOHHBIE BOJHEI.

KaioueBble ci1oBa: HenuHElHbIE BHYTPEHHUE BOJIHBI, Bpamaromuiics okeat, Kopreser-ne Bpus mono6usre
ypaBHEHHS.

Introduction. It is well known that the internal solitary waves commonly observed in
the coastal ocean can be modelled by the Korteweg—de Vries (KdV) equation, or a related
equation, see the reviews by [1] and [2] for instance. When expressed in a reference frame
moving with the linear long wave speed c, the KdV equation is

A+ HAA + M =0, 1)

Here A(x, t) is the amplitude of the linear long wave mode ¢(z) corresponding to the linear
long wave phase speed ¢, which is determined from the modal, see Egs.(14), (15). The coef-
ficients u and A are given by certain integrals involving the modal function, see (17), (18).

However, oceanic internal waves are often observed to propagate for long distances
over several inertial periods, and hence the effect of the Earth’s background rotation needs
to be taken into account. Although the effect of this background rotation is small for an
individual wave, it is potentially significant for the wave evolution. The simplest model
equation which takes account of the background rotation is the Ostrovsky equation, which
is an adaptation of the KdV Eq.(1), derived for water waves by [3] and for internal waves
by [4], and given by,

1A FVAA AL = YA, ()

The background rotation is represented by the coefficient y, which in the absence of a
background shear flow, is given by

f 2
T2
where f is the Coriolis parameter. The explanation for the origin of this extra term lies in
the linear dispersion relation for long waves, which is ®® = c*k*+ f? for the frequency ®

Y (3)
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and wavenumber k. The dominant balance is ® ~ kc, and moving to the reference frame
moving with speed ¢ and adding the next order cubic linear dispersive correction, leads to

the KdV equation. When weak rotation is added, this becomes o ~ kc+ f?/2ke, and so

leads to the Ostrovsky equation.

For oceanic internal waves Ay > 0, see (3) and (18), and then it is known that Eq.(16)
does not support steady solitary wave solutions, see [5-8] and the references therein. The
simplest explanation is that the additional term on the right-hand side of (2) removes the
spectral gap on which solitary waves exist for the KdV equation. Thus, the linear disper-
sion relation of the Ostrovsky Eq.(2) for the phase velocity c, as a function of wavenumber
k is given by

2
Cp = klz Ak
For the KdV Eq.(1) (y = 0) there is a gap in the spectrum for all ¢, > 0 where solitary
waves can exist. But there is no such gap for the Ostrovsky equation, and hence no solitary
waves are expected to occur are expected to occur since Ay > 0 for internal waves. Further
[8-10] have shown that the long-time effect of rotation is the destruction of the initial in-
ternal solitary wave by the radiation of small-amplitude inertia-gravity waves, and the
eventual emergence of a coherent steadily propagating nonlinear wave packet.

In this review paper we re-examine the derivation of the Ostrovsky equation, incorpo-
rating a background shear flow as well as the background stratification. We describe how the
model can be extended to a variable-coefficient Ostrovsky equation to take account of hori-
zontal variability in the background fields and we describe the asymptotic slowly varying
solitary wave solution, and demonstrate that the solitary wave is again eventually destroyed
in a variable medium as in a medium with a uniform background state.

Formulation and derivation. We assume that the fluid is in inviscid and incompres-
sible, and in the basic state has depth h, a density stratification p,(z) and a horizontal shear

flow u,(z) in the x-direction. Further we assume that the flow is two-dimensional, and so
all variables depend only on x, z where z is the vertical co-ordinate, and the time t. Using
the long-wave variables

X =¢gx, T=¢t, 4)

the dependent perturbation variables are then the velocity field (u, ev, ew) the pressure p
and density p, and the auxiliary variable { which is the vertical particle displacement. The
Coriolis parameter is € f , scaled to reflect that rotation is a weak effect. Then the full eq-
uations for these perturbation variables are, expressed to the required order,

Po(Up +Ugy +wUy, )+ py =F

=—p,(Uuy, +ou,)—p(U; +UyU, +oU,y,)+£°(p, +p) v, ®)
po(Vy +Uouy + fu)+pfu, =.... (6)
P, +gp =—€°py(©; + Uy ) +... , @)
Uy, +, =0, 8
Cr +Uplx —@=J; =—UCy —aC,, 9)
Py +UgPy + 0Py, =—Upy —0pP,, (10)
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and the boundary conditions are
o=0, at z=-h, (11)
P+po=0 a z=n,
C=m at Z=n
The density Eq.(10) can be solved by p,(z)+p =p,(z—L), so that

2

Then the vertical momentum Eq.(7) becomes

2
o +poN2C=C"1 =_%_82p0(0‘% + U0y )+

where p,N? =—-gp,,.
The free surface boundary conditions (13), (14) are expanded so that

P—gpon = gpn+gp°22n ey CHMG, +e=m, At =0,

and can then be combined to give

+0p,LC, +.. aa z=0. (12)

2¢2
P—0gp,C=H,= p'\ég

Thus the variables p, n are formally eliminated.
Next we change variables
s=X-—cT, T=¢T.
Then the system (5)-(10) becomes
po (WU, +®u,,) + p, = F F, —&e°pu., po(Wv, + fu)+pfu, =

pz+p0N2C=61=_gp02HC te pOWCOs » U O, =0’ _WCs_wzjlzjl_Cr'

Here W =c—u,. The boundary conditions (11), (12) are unchanged. We then seek a solu-
tion in the form

[u,v,0, p,C]=&"[uy, vy, 0, Py, G 14Uy, vy, 05, Py, Co 1+

At the leading order the solution is
u, = AWG),, o, =—AWG, p, = ApW?d,, {, = Ad,
v, = BBO, p WD =p Wb, —(p,U,),d, B, =A (13)
Here the modal function ¢(z) satisfies the modal system,
(PW°9,), +poN“9=0, (14)
¢=0 at z=0, and W?p,=gp at z=0. (15)
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At the next order, we get the system

Po (WU +w,Uy, ) + Py = F,
P2, +PoN2C2 =G,

U, +®,, =0,

—WC,, —o, =J,.

while the boundary conditions are ®, =0,at z=-h, p, —gpsl, =H;,atz=0, where
F,,... etc. are evaluated at the leading order solution, u,,.... Note that eliminating u, yields

po(®,U,, +Waw,,)+ p,s = IE1 and then eliminating o, gives

—pW 2Czsz +P=F,= 'El *+ P (u0z31 +W31z)-

Finally eliminating p, yields (pW?C,,,), +poN?C, =1, =G, —F,, with the boun-
The compatibility condition is

0

[ 1,0dz ~ [py¢H,1(z = 0) = 0.

~h
This can be written in the form

}éls¢dz + j{ F,¢,dz —[p,H,¢](z = 0) = 0.

Here
Gy = (PoN?), 07 AA, = pW *0A,,
F, = —2p W, A, + (—po [2WW, ¢, +W 97 —~W2¢h,,1—po,W *dd, ) AA, + f “Bp, @,
His = (PoN 0% +2p W *97) AA,.
Making the substitutions yields the Ostrovsky equation
A +PAA, +0A =7VB, B = A that is {A, + pAA; + AA}s = YA (16)

where the coefficients are given by

0
I =3[ pW¢ldz, (17)
-h
0
= [W2¢’dz, (18)
~h
0
ly = 17 [ p,®o,dz. (19)
-h
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0
| =2 pWodz.
—h

When f = 0 this reduces to the usual KdV equation. Note that the expressions for the coef-
ficients p, A are the same as those when the rotation is zero. The expression (19) for y ex-
tends the expression (3) to the case when there is a background shear flow up(z). Note that
ifup=0,then ®= ¢, andsoy = f2/2c as in (3). An alternative derivation of (19) from the
linear modal equation extended to take account of rotation is presented below. Whereas
yA > 0 when there is no shear flow, this may not be always be the case when the shear flow
IS present, and this issue is examined below.

Variable depth and hydrography. When the bottom topography and hydrography
vary slowly in the x-direction the Ostrovsky Eq.(16) is replaced by the variable-coefficient
Ostrovsky equation

cQx _
20 A+pAA + A =TA (20)

{A +CA, +

Here as above A(X, T) is the amplitude of the wave, and X, T are space and time variables
again defined by (4). The coefficients, ¢, u, A, y are defined as above, while Q is the linear
magnification factor, given by

Q=Ic%

It is defined so that Qn? is the wave action flux. Each of these are slowly varying functions
of X. In the absence of rotation, Eq.(20) was derived by [11] for water waves and by [12]
for internal waves (for a recent review, see [13]). The derivation assumes the usual KdV
and Ostrovsky equation balance as described above, and in addition assumes that the wa-
veguide properties (i.e. the coefficients c, Q, u, A) vary slowly so that Q,/Q for instance is
of the same order as the dispersive and nonlinear terms.

The first two terms in (20) are the dominant terms, and it is then useful to make the
transformation

% dX
A=./Qn, t:j? x=t—t (21)
Substitution into (20) yields, to the same order of approximation as in the derivation of (20),
{A +0AA +3A,}, =PA o=t 5=t pe o=t
L Q' ¢’ AR

Here the coefficients a, 5, B are functions of t alone. Note that although t is a variable
along the spatial path of the wave, we shall subsequently refer to it as the “time”. Similar-
ly, although x is a temporal variable, in a reference frame moving with speed c, we shall
subsequently refer to it as a «space» variable.

EQ.(20) can be written as

A +0AA +0A =PB, By =A (22)

Eq.(22) has two conservation laws for localised solutions

T Adx =0, (23)
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% j A%dx =0. (24)

The first (23) is a zero-mass condition, and note that when A is localised, then so is B; in-
deed B, like A, also has zero mean. The second (24) expresses momentum conservation.

Slowly-varying solitary waves. We now suppose that the coefficients a, 6 are slowly
varying, and that 3 is small, and write

a=o(T), 6=9(T), B:sB, T =et, e<<1.
We seek a standard multi-scale expansion for a modulated wave, namely

A
A=AQO,T)+AYO,T)+..., 0= x—ljv (T)dT.
&

Substitution into (22) yields at the leading orders
~VA® +aA@A@ +5AQ =0,

~VAY +a(AQAD) +5AQ =—AQ 4+ BB, B® = A©, (25)

Each of these is essentially an ordinary differential equation with 6 as the independent va-
riable, and T as a parameter.
The solution for A© is taken to be the solitary wave

A® = asech?(K0), (26)
where V = “—; — 45K?2, 27)

At the next order, we seek a solution of (25) for AY) which is bounded as 6§ — oo,
and in fact A — 0 as 6 — oo. The adjoint equation to the homogeneous part of (25) is

—VAY + AP AY + AL =0.

Two solutions are 1, AX: while both are bounded, only the second solution satisfies the
condtion that AY) — 0 as © — . A third solution can be constructed using the variation-
of-parameters method, but it is unbounded as 6 — +oo. Hence only one orthogonallg/ condi-
tion can be imposed, namely that the right-hand side of (25) is orthogonal to A, which
leads to

o % ~
- [[A®T7d0 = B[BOT' (6 — —o0). (28)
Note that B? (6 — o) = 0, and so
@ a
BO = j A©dp = — (A tanh(Ke)).

As the solitary wave (26) has just one free parameter (e.g. the amplitude a), this equation
suffices to determine its variation. Substituting (26), (27) into (28) leads to the law

Al/zAT _ _36{@ 2/3 A, A:{@}usa.
o o

This has the solution
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T
AV2 _ Aélz —Bs, s— I{@}de.
a
0

Thus, as for constant depth case, the solitary wave is extinguished in finite time. For con-
stant depth, the extinction time is, in dimensional coordinates
t _l{aaO}lIZZE{%}l/Z’ Y _te

° B 125 y 12 * ¢

where here we recall that “time” is really “distance” along the path, that is, t = y/c from
(21). Note that we have assumed that > 0, B > 0 which is the case for waves propagating
in the positive &-direction, and have also assume for simplicity that o > 0 and so a > 0. But
if 0 <0, then a <0 and we can simply replace 6, a with ||, |a| in these expressions.

We now recall that Eqg.(22) has two conservation laws (23), (24). The condition (28)
is easily recognized as the leading order expression for conservation of local momentum.
But since this completely defines the slowly-varying solitary wave, we now see that this
cannot simultaneously conserve total mass. This is apparent when one examines the solu-
tion of (25) for AY, from which it is readily shown that although A®— 0 as 6 — oo, AV—
B B (0 — —0)0/V as § — —oo. This non-uniformity in the slowly-varying solitary wave
has been recognized for some time, see, for instance, [14] and the references therein. The
remedy is the construction of a trailing shelf A; of small amplitude O(¢) but long length-
scale O(1/¢), which thus has O(1) mass, but O(e) momentum. It resides behind the solita-
ry wave, and to leading order becomes trailing inertia-gravity waves. In the case of con-
stant background environment, this trailing radiation develops into a nonlinear wave packet
propagating with the maximum group velocity, see [8—-10]. We would expect that a similar
outcome may be also the case when the background varies, but that is a topic for future
study:

_ 2pad
KV

To leading order, the trailing wave is a linear long wave. At the location of the solitary
wave, it is given by

eA® ~ , as 0 - —w, (29)

A~ bsin(k0), where Vk* =p. (30)

Here we assume that this trailing wave and the solitary wave must have the same phase 0
in order to match. Hence k is found from the linear long wave dispersion relation, and is
determined from V. Letting k — 0 in (30) and matching with (29) yields

6p :_12(35)“2 _12()t
Kka. o T TR

bk:—@, sothat b =-— (31)
KV

This determines the trailing wave amplitude b, or n, in terms of the original variables.
Note that it is proportional to B2, and interestingly is independent of the solitary wave
amplitude a, and has the opposite polarity. However, we see from (31) that since V is de-
creasing, the wavenumber k of the trailing radiation increases. Also, although the ampli-
tude b is independent of a, it does vary with a, 6 as the wave shoals.

In contrast, when 3 = 0, the expression for the solitary wave amplitude continues to
hold, and yields the well-known expression

10



Mopaeau HeJJUHEHHBIX TJITHHHBIX BHYTPCHHHUX BOJIH ...

13 b on N3
A=A a _[0‘80] l _(HC ono]

=, =5 —=l 20 |
a, 0,0 No 1oCrQ A

Also, the trailing shelf is determined in a different way, as now

MO 0 _ [ A
A~ =TT as 6 —oo, where M = [ A%,

Since M@ = 2a/K is the mass of the solitary wave, this is just the expression of conserva-
tion or mass. Hence the amplitude of the trailing shelf at the solitary wave location is As =
AD (9 — —o0), we find that

a,  12"%q; o .

2a, _
= = = s a=—, C = .
A=K T 3K Cl25a®? 8 °

When a is decreasing, As has the opposite polarity to the solitary wave. This can now be
compared with the corresponding expression (31) when rotation is present.

Conclusion. Since oceanic internal solitary waves often survive for several inertial pe-
riods, it is necessary to replace the usual Korteweg—de Vries model (1) with the Ostrovsky
Eq.(2). In this paper, we have reviewed the derivation of the Ostrovsky equation, and also
extended it by allowing for a background shear flow as well as the background density strati-
fication. Then we have presented a variable-coefficient Ostrovsky equation to take account
of variable topography and hydrography, and suggest that this should be the basic model to
describe the evolution of large amplitude oceanic internal waves. Its properties are yet to be
determined in full, but here we show that, under the combined effect of rotation and variable
background, a slowly varying solitary wave deforms adiabatically while being extinguished
in finite time by the radiation of inertia-gravity waves. In a uniform medium [8-10] have
shown that the initial solitary wave is replaced by another coherent structure. It has yet to be
seen if the same, or similar, outcome will occur in a variable medium.

Appendix

Modal equation with rotation. An explanation of the form that y (19) takes, can be
found by considering the form of the modal Eq.(14) when rotation is included a priori,

2 g’ f? 2
[po(\N o, - K2 CDJ +poN“$=0,
2¢2
$=0 at z=0, and qu)z—%@:gq) at  z=0.

Here k is the wavenumber, and we recall that ¢ %f is the Coriolis parameter, while @ is de-
fined in (13). When up(z) = 0, ® = ¢, and this just replaces ¢ with ¢ + & %%/k?, or ¢ with
c? + g ?f/2ck, and then the usual explanation of the extra term added to the KdV equation
to produce the Ostrovsky equation follows. But in the presence of a shear flow, this argu-
ment cannot be used. Instead treat ¢ *f/k? as a small perturbation, and expand c as ¢ + &c.
To find dc, note that

J-[po(vvzd)? - Skfz q)(l)szZ = IPON2¢2dZ +[p0g¢]z:0'

-h

11
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This yields
0 2 f 2
25cj pW2dz = I15¢ = j P, D, dz,
—h

which agrees with (19).

Examples. It is now of interest to find the sign of y (19), assuming that ¢ >
max[ug(z)], W > 0, and so | > 0. If up = 0, then y = f/2¢c > 0. The question is then, can shear
cause y < 0? In general

=171 {pott - Oy, oz,

-h

i { [pobice 14" P+ [ 4] | dz}, @2)

_ N’ 3(p0u02) 2 M_?’poum
- o [o] B o0

Note that from (32) y < 0 will need U, (0) > 0 and/or uo,, < O for at least some z.
Here we first consider the surface wave case, when py = constant = 1, N? = 0. Then
the solution of (14), (15) is

z 0
g g
(94, [9Lgr=1 33
T el (33)
0 2 0 (2
and fyzfz{jsg4dz— % } IA:L:ZJ‘g—sdz. (34)
W 2W 2W*(0) P W

If uo(z) > up(0) then it is readily shown that y > 0. But a surface intensified current, that is
Uo(2) < Up(0) might lead to y < 0? Let Uy = oz + h) and then (33), (34) yields

2,2 1/2
9] L 1 4 orccman)=gh c=Nifgh ¥
o |W(0) W(h) 2 4

by f2 2gh+a’h?* —cah _¢2 4gh + a’h? —ah(gh + a®h?/ 4)"'?
Y 2gh? 4gh? '

2(gh+0a’h?/4)"?
- .

Hence y > 0 for all a, including a > 0.

Next, we consider a two-layer fluid, with layer depths h; > (h = h; + h,) and densities
p12 With a shear flow ug(z) in the upper layer, such that ug(—h;) = 0. Using the Boussinesq
approximation with a rigid lid at z = 0, the solution of (14), (15) is

12
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o= h<z<oh,
h2
2 J—
C1+C—:g’— 9(p, p1)’
h, P2
0 2 0 2
and Iy = f? j£l4dz+i—c—12 , =1 -2 Ic—lsdz+£ . (35)
“h QW h, 2c P, W h,

In the limit h,— o, C; — g'and the expression (35) is quite similar to (34) for surface
waves. Hence we conclude again that for a linear shear flow ug = a(z + hy), y > 0 for all a.

These two examples indicate that shear flows for which y < 0 may be quite hard to

find, and a subject for future study.

References

1. Grimshaw R. Internal solitary waves. Environmental Stratified Flows / Ed.: R.Grimshaw. Chapter 1.
Kluwer, Boston, 2001. P.1-29.

2. Helfrich K.R., Melville W.K. Long nonlinear internal waves // Ann. Rev. Fluid Mech. 2006. V.38.
P.395-425.

3. Ocmposcruii JI.A. HenuHeliHble BHYTPEHHUE BOJHBI BO BpainaromiemMcs: okeane / Oxeanosorus. 1978.
T.18, Ne 2. C.181-191. Anrx. mep.: Ostrovsky L.A. Nonlinear internal waves in a rotating ocean // Ocea-
nology, 1978. V.18. P.119-125.

4. Grimshaw R. Evolution equations for weakly nonlinear, long internal waves in a rotating fluid // Stud.
Appl. Math. 1985. V.73. P.1-33.

5. Leonov A.l. The effect of Earth rotation on the propagation of weak nonlinear surface and internal long
oceanic waves // Ann. New York Acad. Sci. 1981. VV.373. P.150-159.

6. Iamkun B.M., Cmenansny FO.A. O cylieCTBOBaHHH CTAI[HOHAPHBIX YEAMHEHHBIX BOJIH BO Bpallaroieics
sxuakocta // [puknaanas marematrka u mexanuka (IIMM), 1991. T.55, Ne 6. C.1051-1055. Anra. nep.:
Galkin V.N., Stepanyants Yu.A. On the existence of stationary solitary waves in a rotating fluid // J. Appl.
Maths. Mech. 1991. V.55. P.939-943.

7. Grimshaw R., Ostrovsky L.A., Shrira V.I., Stepanyants Yu.A. Long nonlinear surface and internal gravity
waves in a rotating ocean // Surv. Geophys., 1998. V.19. P.289-338.

8. Grimshaw R., Helfrich K.R. The effect of rotation on internal solitary waves // IMA J. Appl. Math., 2012,
V.77. P.326-339.

9. Grimshaw R., Helfrich K.R. Long-time solutions of the Ostrovsky equation // Stud. Appl. Math., 2008.

V.121. P.71-88.

10. Grimshaw R., Helfrich K.R., Johnson E.R. Experimental study of the effect of rotation on nonlinear inter-

nal waves // Phys. Fluids. 2013. V.25. 056602.

11.Johnson R.S. On the development of a solitary wave moving over an uneven bottom // Proc. Camb. Phil.

Soc., 1973. V.73. P.183203.

12. Grimshaw R. Evolution equations for long nonlinear internal waves in stratified shear flows // Stud. Appl.

Math. 1981. V.65. P.159-188.

13. Grimshaw R., Pelinovsky E., Talipova T., Kurkina A. Internal solitary waves: propagation, deformation

and disintegration // Nonlinear Proc. in Geophysics, 2010. V.17. P.633-649.

14. Grimshaw R., Mitsudera H. Slowly-varying solitary wave solutions of the perturbed Korteweg-de Vries

Crarbs nocrynuna B pegakuuto 09.05.2013 r.

equation revisited // Stud. Appl. Math. 1993. V.90. P.75-86.

=

13





