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МОДЕЛИ НЕЛИНЕЙНЫХ ДЛИННЫХ ВНУТРЕННИХ ВОЛН  

ВО ВРАЩАЮЩЕМСЯ ОКЕАНЕ 

 

 
Известное уравнения Кортевега-де Вриза, применяемое для описания длинных 

нелинейных внутренних волн в присутствии вращения Земли, заменяется уравне-

нием Островского. Здесь мы даем асимптотический вывод этого уравнения, учи-

тывая фоновое сдвиговое течение и плотностную стратификацию. Затем обобща-

ем эту модель, чтобы учесть горизонтальную неоднородность параметров среды, 

и описываем, как начальный солитон уравнения Кортевега-де Вриза деформиру-

ется и излучает инерционно-гравитационные волны. 

 

Ключевые слова: нелинейные внутренние волны, вращающийся океан, Кортевег-де Вриз подобные 

уравнения. 

 

 

Introduction. It is well known that the internal solitary waves commonly observed in 

the coastal ocean can be modelled by the Kortewegde Vries (KdV) equation, or a related 

equation, see the reviews by [1] and [2] for instance. When expressed in a reference frame 

moving with the linear long wave speed c, the KdV equation is 

.0λμ  xxxxt AAAA                                                  (1) 

Here A(x, t) is the amplitude of the linear long wave mode )(z  corresponding to the linear 

long wave phase speed c, which is determined from the modal, see Eqs.(14), (15). The coef-

ficients µ and λ are given by certain integrals involving the modal function, see (17), (18). 

However, oceanic internal waves are often observed to propagate for long distances 

over several inertial periods, and hence the effect of the Earth’s background rotation needs 

to be taken into account. Although the effect of this background rotation is small for an 

individual wave, it is potentially significant for the wave evolution. The simplest model 

equation which takes account of the background rotation is the Ostrovsky equation, which 

is an adaptation of the KdV Eq.(1), derived for water waves by [3] and for internal waves 

by [4], and given by, 

,γ}λ{ AAvAAA xxxxxt                                               (2) 

The background rotation is represented by the coefficient γ, which in the absence of a 

background shear flow, is given by 

,
2

γ
2

c

f
                                                            (3) 

where f is the Coriolis parameter. The explanation for the origin of this extra term lies in 

the linear dispersion relation for long waves, which is 2222ω fkc   for the frequency ω 
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and wavenumber k. The dominant balance is ω  kc, and moving to the reference frame 

moving with speed c and adding the next order cubic linear dispersive correction, leads to 

the KdV equation. When weak rotation is added, this becomes ,2/~ω 2 kcfkc  and so 

leads to the Ostrovsky equation. 

For oceanic internal waves λγ > 0, see (3) and (18), and then it is known that Eq.(16) 

does not support steady solitary wave solutions, see [58] and the references therein. The 

simplest explanation is that the additional term on the right-hand side of (2) removes the 

spectral gap on which solitary waves exist for the KdV equation. Thus, the linear disper-

sion relation of the Ostrovsky Eq.(2) for the phase velocity cp as a function of wavenumber 

k is given by 

2

2
λ

γ
k

k
c p  . 

For the KdV Eq.(1) (γ = 0) there is a gap in the spectrum for all cp  0 where solitary 

waves can exist. But there is no such gap for the Ostrovsky equation, and hence no solitary 

waves are expected to occur are expected to occur since λγ > 0 for internal waves. Further 

[810] have shown that the long-time effect of rotation is the destruction of the initial in-

ternal solitary wave by the radiation of small-amplitude inertia-gravity waves, and the 

eventual emergence of a coherent steadily propagating nonlinear wave packet. 

In this review paper we re-examine the derivation of the Ostrovsky equation, incorpo-

rating a background shear flow as well as the background stratification. We describe how the 

model can be extended to a variable-coefficient Ostrovsky equation to take account of hori-

zontal variability in the background fields and we describe the asymptotic slowly varying 

solitary wave solution, and demonstrate that the solitary wave is again eventually destroyed 

in a variable medium as in a medium with a uniform background state. 

Formulation and derivation. We assume that the fluid is in inviscid and incompres-

sible, and in the basic state has depth h, a density stratification )(ρ0 z  and a horizontal shear 

flow )(0 zu  in the x-direction. Further we assume that the flow is two-dimensional, and so 

all variables depend only on x, z where z is the vertical co-ordinate, and the time t. Using 

the long-wave variables 

xX ε , tT ε ,                                                              (4) 

the dependent perturbation variables are then the velocity field )ε,ε,( vu  the pressure p 

and density ρ, and the auxiliary variable δ which is the vertical particle displacement. The 

Coriolis parameter is f2ε , scaled to reflect that rotation is a weak effect. Then the full eq-

uations for these perturbation variables are, expressed to the required order, 

,)ρρ(ε)ω(ρ)ω(ρ

)ω(ρ

0

2

000

1000

fvuuuuuuu

Fpuuuu

zXTzX

XzXT




                        (5) 

....ρ)(ρ 000  fufuuuv XT                                                                (6) 

,...)ωω(ρερ 00

2  XTz ugp                                                           (7) 

,0ω  zXu                                                                                             (8) 

,ωδδωδδ 10 zXXT uJu                                                             (9) 

,ωρρωρρρ 00 zXzxt uu                                                              (10) 
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and the boundary conditions are 

,at,0ω hz                                                   (11) 

εat,00  zpp , 

.εatεδ  z  

The density Eq.(10) can be solved by ),δ(ρρ)(ρ 00  zz  so that 

....
2

δρ
δρρ

2

0
0  zz

z  

Then the vertical momentum Eq.(7) becomes 

,...)ωω(ρε
2

δρ
δρρ 00

2
2

0
1

2

0  XT
zz

z u
g

GN  

where .ρρ 0

2

0 zgN   

The free surface boundary conditions (13), (14) are expanded so that 

,0atε,...εδδ,...
2

ερ
ρεερ

2

0
0  z

g
ggp z

z  

and can then be combined to give 

.0at,...δδρ
2

δρ
δρ z0

22

0
10  zg

N
Hgp                        (12) 

Thus the variables ρ, ε are formally eliminated. 

Next we change variables 

.εη, 2TcTXs   

Then the system (5)–(10) becomes 

,ρε
~

)ω(ρ η0

2

1100 uFFpuWu szs 
 

....ρ)(ρ 00  fufuWvs  

,ωρε
2

δρ~
δρ 0

2
2

0
1

2

0 s
zz

z W
g

GNp 
 

,0ω  zsu
 

.δ
~

ωδ η11  JJW s  

Here 0ucW  . The boundary conditions (11), (12) are unchanged. We then seek a solu-

tion in the form 

....]δ,,ω,,[ε]δ,,ω,,[ε]δ,,ω,,[ 22222

4

11111

2  pvupvupvu  

At the leading order the solution is 

,δ,ρ,ω,)( 1

2

0111  AWApWAWAu zsz  

.,)ρ(ρФρ,Ф 00001 ABuWWfBv szz                              (13) 

Here the modal function )(z  satisfies the modal system, 

,0ρ)ρ( 2

0

2

0  NW zz                                                   (14) 

.0atand,0at0 2  zgWz z                           (15) 
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At the next order, we get the system 

,
~

)ω(ρ 120220 FpuWu szs   

,
~

δρ 12

2

02 GNp z   

,0ω22  zsu  

.
~

ωδ 122 JW s   

while the boundary conditions are ,at,0ω2 hz 
 

,0at,δρ 1202  zHgp
 

where 

,...1F  etc. are evaluated at the leading order solution, ,...1u . Note that eliminating u2 yields 

,
~

)ω(ωρ 122020 FpWu szz 
 
and then eliminating 

2ω  gives  

).
~~

(ρ
~

δρ 11001222

2

0 zzssz JWJuFFpW   

Finally eliminating p2 yields ,2122

2

02

2

0

~
δρ)δρ( zsszsz FGINW 

 
with the boun-

dary conditions ,at0δ2 hzW s 
 

.εatδρδρ 0212202
2

0  zFHHgW sssz  

The compatibility condition is 

.0)0(]ρ[

0

202 


zHdzI
h

 

This can be written in the form 

.0)0(]ρ[
~

0

10

0

21  
 

zHdzFdzG
h

s

h

zs  

Here 

.)ρ2ρ(

,Ф)ρ]2[ρ(ρ2

ρ)ρ(
~

22

0

22

01

0

22

0

222

0η02

,

2

0

22

01

szs

szzzzzzzz

sssszs

AAWNH

BfAAWWWWWAWF

AWAANG







 

Making the substitutions yields the Ostrovsky equation 

.γ}λμ{isthat,,γλμ η AAAAAABBAAAA sssssssssst               (16) 

where the coefficients are given by 

,ρ3μ 2

0

2

0 dzWI z

h

 


                                                  (17) 

,λ 2

0

2 dzWI
h

 


                                                     (18) 

.Фργ

0

0

2 dzfI
h

z


                                                    (19) 
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.ρ2

0

2

0 dzWI
h

z


  

When f = 0 this reduces to the usual KdV equation. Note that the expressions for the coef-

ficients µ, λ are the same as those when the rotation is zero. The expression (19) for γ ex-

tends the expression (3) to the case when there is a background shear flow u0(z). Note that 

if u0 = 0, then Φ =  z, and so γ = f
2
/2c as in (3). An alternative derivation of (19) from the 

linear modal equation extended to take account of rotation is presented below. Whereas 

γλ > 0 when there is no shear flow, this may not be always be the case when the shear flow 

is present, and this issue is examined below. 

Variable depth and hydrography. When the bottom topography and hydrography 

vary slowly in the x-direction the Ostrovsky Eq.(16) is replaced by the variable-coefficient 

Ostrovsky equation 

.γ}λμ
2

{ AAAAA
Q

cQ
cAA XXXXX

X
XT                                  (20) 

Here as above A(X, T) is the amplitude of the wave, and X, T are space and time variables 

again defined by (4). The coefficients, c, µ, λ, γ are defined as above, while Q is the linear 

magnification factor, given by 

.2IcQ   

It is defined so that Qε
2
 is the wave action flux. Each of these are slowly varying functions 

of X. In the absence of rotation, Eq.(20) was derived by [11] for water waves and by [12] 

for internal waves (for a recent review, see [13]). The derivation assumes the usual KdV 

and Ostrovsky equation balance as described above, and in addition assumes that the wa-

veguide properties (i.e. the coefficients c, Q, µ, λ) vary slowly so that Qx/Q for instance is 

of the same order as the dispersive and nonlinear terms.  

The first two terms in (20) are the dominant terms, and it is then useful to make the 

transformation  

.η,
dχ

,ε

χ

  tx
c

tQA                                      (21) 

Substitution into (20) yields, to the same order of approximation as in the derivation of (20), 

AAAAA xxxxxt β}δα{  ,         .
2

γβ,
λ

δ,
μ

α
2

3

f
c

cQc
  

Here the coefficients α, δ,  are functions of t alone. Note that although t is a variable 

along the spatial path of the wave, we shall subsequently refer to it as the “time”. Similar-

ly, although x is a temporal variable, in a reference frame moving with speed c, we shall 

subsequently refer to it as a «space» variable. 

Eq.(20) can be written as 

.,βδα ABBAAAA xxxxxt                                          (22) 

Eq.(22) has two conservation laws for localised solutions 

0




Adx ,                                                         (23) 
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.02 








dxA
t

                                                      (24) 

The first (23) is a zero-mass condition, and note that when A is localised, then so is B; in-

deed B, like A, also has zero mean. The second (24) expresses momentum conservation. 

Slowly-varying solitary waves. We now suppose that the coefficients α, δ are slowly 

varying, and that β is small, and write 

.1ε,ε,β
~
εβ),(δδ),(αα  tTTT  

We seek a standard multi-scale expansion for a modulated wave, namely 

,...),ζ(ε),(ζ )1()0(  TATAA  

T

dTTVx .)(
ε

1
ζ  

Substitution into (22) yields at the leading orders 

,0δα )0(

ζζζ

)0(

ζ

)0()0(

ζ  AAAVA  

.,β
~

δ)(α )0()0(

ζ

)0()0()0(

ζζζζ

)1()0()1(

ζ ABBAAAAVA T                          (25) 

Each of these is essentially an ordinary differential equation with ζ as the independent va-

riable, and T as a parameter. 

The solution for A
(0)

 is taken to be the solitary wave 

),ζ(sec 2)0( KhaA                                                          (26) 

where .δ4
3

α 2K
a

V                                                                                                         (27) 

At the next order, we seek a solution of (25) for A
(1)

 which is bounded as ζ → ±∞, 

and in fact A
(1)

 → 0 as ζ → ∞. The adjoint equation to the homogeneous part of (25) is 

.0α )1(

ζζζ

(1)

ζ

)0()1(  AAAVA   

Two solutions are 1, A
(1)

; while both are bounded, only the second solution satisfies the 

condtion that A
(1)

 → 0 as ζ → ∞. A third solution can be constructed using the variation-

of-parameters method, but it is unbounded as ζ → ±∞. Hence only one orthogonally condi-

tion can be imposed, namely that the right-hand side of (25) is orthogonal to A
(0)

, which 

leads to 

).ζ(][β
~

ζ][ 2)0(2)0( 








BdA
T

                                     (28) 

Note that B
(0)

 (ζ → ∞) = 0, and so 

)).ζtanh(1(ζ)0()0( K
K

a
dAB  





 

As the solitary wave (26) has just one free parameter (e.g. the amplitude a), this equation 

suffices to determine its variation. Substituting (26), (27) into (28) leads to the law 

.}
α

12δ
{ˆ,ˆ}

α

δ12
{β

~
3ˆˆ 3/13/22/1 aAAAA T   

This has the solution 
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.}
α

12δ
{,β

~ˆˆ

0

3/22/1

0

2/1



T

dTssAA  

Thus, as for constant depth case, the solitary wave is extinguished in finite time. For con-

stant depth, the extinction time is, in dimensional coordinates 

,χ,}
12λ

με
{

γ

1
}

δ12

α
{

β

1 2/102/10

c

ta
t e

ee   

where here we recall that “time” is really “distance” along the path, that is, t = χ/c from 

(21). Note that we have assumed that δ > 0, β > 0 which is the case for waves propagating 

in the positive ξ-direction, and have also assume for simplicity that α > 0 and so a > 0. But 

if α < 0, then a < 0 and we can simply replace δ, a with |δ|, |a| in these expressions. 

We now recall that Eq.(22) has two conservation laws (23), (24). The condition (28) 

is easily recognized as the leading order expression for conservation of local momentum. 

But since this completely defines the slowly-varying solitary wave, we now see that this 

cannot simultaneously conserve total mass. This is apparent when one examines the solu-

tion of (25) for A
(1)

, from which it is readily shown that although A
(1)

→ 0 as ζ → ∞, A
(1)

→ 

β B
(0)

 (ζ → −∞)ζ/V as ζ → −∞. This non-uniformity in the slowly-varying solitary wave 

has been recognized for some time, see, for instance, [14] and the references therein. The 

remedy is the construction of a trailing shelf As of small amplitude O( ε ) but long length-

scale O(1/ ε ), which thus has O(1) mass, but O( ε ) momentum. It resides behind the solita-

ry wave, and to leading order becomes trailing inertia-gravity waves. In the case of con-

stant background environment, this trailing radiation develops into a nonlinear wave packet 

propagating with the maximum group velocity, see [810]. We would expect that a similar 

outcome may be also the case when the background varies, but that is a topic for future 

study: 

,
ζβ2

~ε )1(

KV

a
A   as .ζ                                                (29) 

To leading order, the trailing wave is a linear long wave. At the location of the solitary 

wave, it is given by  

),ζsin(~ kbA  where β.2 Vk                                             (30) 

Here we assume that this trailing wave and the solitary wave must have the same phase ζ 

in order to match. Hence k is found from the linear long wave dispersion relation, and is 

determined from V. Letting k → 0 in (30) and matching with (29) yields 

,
β2

KV

a
bk   so that ,

α

)12(β

α

β6 1/2


Kk
b  .

μ

)12(γ
ε

1/2
s

                     (31) 

This determines the trailing wave amplitude b, or εb in terms of the original variables. 

Note that it is proportional to β
1/2

, and interestingly is independent of the solitary wave 

amplitude a, and has the opposite polarity. However, we see from (31) that since V is de-

creasing, the wavenumber k of the trailing radiation increases. Also, although the ampli-

tude b is independent of a, it does vary with α, δ as the wave shoals. 

In contrast, when β = 0, the expression for the solitary wave amplitude continues to 

hold, and yields the well-known expression 
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.
λμ

λμ

ε

ε
,

δα

αδ
,ˆˆ

3/1

22

00

0

2

0

2

0

3/1

0

0

0

0 






















Qc

Qc

a

a
AA  

Also, the trailing shelf is determined in a different way, as now 

,
)0(

)1(

V

M
A T  as ,ζ   where 





 .ζ)0()0( dAM  

Since M
(0)

 = 2a/K is the mass of the solitary wave, this is just the expression of conserva-

tion or mass. Hence the amplitude of the trailing shelf at the solitary wave location is As = 

A
(1)

 (ζ → −∞), we find that 

.
α

,
δ

α
α,

αδ

α12

δ4

2
3/1

0

0
03/52/1

0

2/1

3

a
C

CK

a

VK

a
A TTT

s   

When α  is decreasing, As has the opposite polarity to the solitary wave. This can now be 

compared with the corresponding expression (31) when rotation is present. 

Conclusion. Since oceanic internal solitary waves often survive for several inertial pe-

riods, it is necessary to replace the usual Kortewegde Vries model (1) with the Ostrovsky 

Eq.(2). In this paper, we have reviewed the derivation of the Ostrovsky equation, and also 

extended it by allowing for a background shear flow as well as the background density strati-

fication. Then we have presented a variable-coefficient Ostrovsky equation to take account 

of variable topography and hydrography, and suggest that this should be the basic model to 

describe the evolution of large amplitude oceanic internal waves. Its properties are yet to be 

determined in full, but here we show that, under the combined effect of rotation and variable 

background, a slowly varying solitary wave deforms adiabatically while being extinguished 

in finite time by the radiation of inertia-gravity waves. In a uniform medium [810] have 

shown that the initial solitary wave is replaced by another coherent structure. It has yet to be 

seen if the same, or similar, outcome will occur in a variable medium.  

Appendix 

Modal equation with rotation. An explanation of the form that γ (19) takes, can be 

found by considering the form of the modal Eq.(14) when rotation is included a priori, 

,0ρФ
ε

(ρ 2

02

22
2

0 







 N

k

f
W

z

z  

.0atФ
ε

 and,0at0
2

22
2  zg

k

f
Wz z  

Here k is the wavenumber, and we recall that ε
2
f is the Coriolis parameter, while Φ is de-

fined in (13). When u0(z) = 0, Φ = z  and this just replaces c
2
 with c

2
 + ε

2
f
2
/k

2
, or c with 

c
2
 + ε

2
f
2
/2ck, and then the usual explanation of the extra term added to the KdV equation 

t0 produce the Ostrovsky equation follows. But in the presence of a shear flow, this argu-

ment cannot be used. Instead treat ε
2
f
2
/k

2
 as a small perturbation, and expand c as c + δc. 

To find δc, note that 

.]ρ[ρФ
ε

(ρ 00

22

0

0

0

z2

22
22

0 











  z

hh

z gdzNdz
k

f
W
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This yields 
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which agrees with (19). 

Examples. It is now of interest to find the sign of γ (19), assuming that c > 

max[u0(z)], W > 0, and so I > 0. If u0 = 0, then γ = f
2
/2c > 0. The question is then, can shear 

cause γ < 0? In general 
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                           (32) 

Note that from (32) γ < 0 will need u0z (0) > 0 and/or u0zz < 0 for at least some z. 

Here we first consider the surface wave case, when ρ0 = constant = 1, N
2
 = 0. Then 

the solution of (14), (15) is 
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If u0(z) ≥ u0(0) then it is readily shown that γ > 0. But a surface intensified current, that is 

u0(z) ≤ u0(0) might lead to γ < 0? Let u0 = α(z + h) and then (33), (34) yields 
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Hence γ > 0 for all α, including α > 0. 

Next, we consider a two-layer fluid, with layer depths h1,2 (h = h1 + h2) and densities 

ρ1,2 with a shear flow u0(z) in the upper layer, such that u0(−h1) = 0. Using the Boussinesq 

approximation with a rigid lid at z = 0, the solution of (14), (15) is 
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                    (35) 

In the limit h2→ ∞, C1 → g and the expression (35) is quite similar to (34) for surface 

waves. Hence we conclude again that for a linear shear flow u0 = α(z + h1), γ > 0 for all α.  

These two examples indicate that shear flows for which γ < 0 may be quite hard to 

find, and a subject for future study. 
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