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Bausinue (l)OHOBOFO TeueHHsl B MOAEJISAX JJIMHHBIX HeJIMHEHHBIX BHYTPECHHHUX BOJIH

VYpaBuenune Kopresera—uae Bpusa sBnsercss cTaHIapTHONW MOJENBIO JJIS OMHMCAHUS TUHAMUKN
JUIMHHBIX HEJIMHEHHBIX BHYTPEHHHX BOJH B okeaHe. Korga mpuHHMAroTCs BO BHUMAHHUE Clia-
Oble BO3/ICiCTBUSI BpallleHns1 3EMJIM M MTONEPEUHbIX BO3MYILEHUH, TO ypaBHEHHE N3MEHSIETCS K
(hopme Tak HazpIBaeMOro MoanHUIMpOoBaHHOTO ypaBHeHus KanomieBa—IleTBuamBuim ¢ Bpa-
HieHUeM. B 3Toi KOpOTKOM CTaTbe aHa peBU3Hs aCUMIITOTUYECKOM IIPOLEAYPBI BbIBOIA 3TOIO
ypaBHEHUsI ¢ y4eTOM (DOHOBOT'O CIBUTOBOTO TEUCHHSI TaK K€, KaK v (JOHOBOU CTpaTh()UKAIIHH.

KirodeBble ¢j10Ba: COIMMTOHEI BHYTPCHHHX BOJIH, YPABHCHUC KaHOMHeBa—HCTBI/IaH.IBI/UH/I, YpaBHCHHUC OCTpOBCKOl"O.
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Effect of a Background Shear Current on Models for Nonlinear Long Internal Waves

The Korteweg—de Vries equation is a standard model for the description of long nonlinear internal
waves in the ocean. When the effect of weak transverse variations and the Earth's background rotation
are taken into account, this is replaced by the rotation-modified Kadomtsev—Petviashvili equation. In
this short note we revisit the asymptotic derivation of this equation, incorporating a background shear
flow as well as the background stratification.

Key words: Internal solitary waves, Kadomtsev—Petviashvili equation, Ostrovsky equation.

It is well known that the internal solitary waves commonly observed in the coastal ocean can be
modelled by the Korteweg—de Vries (KdV) equation, or a related equation, see the reviews by Grimshaw
[1] and Helfrich and Melville [2] for instance. When expressed in a reference frame moving with the linear
long wave speed ¢, the KdV equation is

A +pdd +2r4_ =0,
Here x, t are space and time coordinates, and A4(x, ) is the amplitude of the linear long wave mode o(z)
corresponding to the linear long wave phase speed ¢, which is determined from the modal equation, given by

(P )z + p N9 =0; W, =c,—uyz2); -h <z<0; (1)
¢=0atz=0;and Wj’p =gpatz=0. ?2)

Here p(2), u,(z) are the background density and current respectively and p N> = —gp, . The fluid occupies
the domain between the rigid bottom z = —/ and the free surface at z = 0. The coefficients p and A are given

by certain integrals involving the modal function,
0 0 0
Tu= jpo Wiedz, 1L = jpo Wie'dz ]=2jpO W, dz.
h h h

However, oceanic internal waves are often observed to propagate for long distances over several
inertial periods, and hence the effect of the Earth's background rotation needs to be taken into account. At
the same time it may be necessary to take account of weak dependence on the transverse variable y. The
simplest model equation which takes account of both these effects is the rotation-modified Kadomtsev—
Petviashvili (KP) equation, see Grimshaw [3],

20



Binsinne ¢onoBoro TeyeHus...

{A,+pdd, +2rA4 3 +BA —vf 24=0. (3)

Here f'is the Coriolis parameter measuring the Earth's rotation. This is an extension of the KP equation,
see Kadomtsev and Petviashvili [4], which includes the y-variations on the one hand, and of the Ostrovsky
equation, see Ostrovsky [5] for the original derivation or Grimshaw and Helfrich [6] for a recent account,
which includes the rotational term on the other hand. In the absence of a background shear flow, that is
4 2) =0,
— cO _ 1
p 2= 20 4

The explanation for these expressions lies in the linear dispersion relation for long waves, which is
o’ = cX(k* + P) + f, for a frequency o and wavenumbers £, / in the x, y-directions respectively. The
dominant balance is ® ~ k¢, and moving to the reference frame moving with speed ¢, and adding the next
order cubic linear dispersive correction, leads to the KdV equation. When weak y-dispersion (7 << k%)
and weak rotation are added, this becomes o ~ kc, + ¢ [*/2k + f*/2kc , and so leads to equation (3). A more
formal asymptotic derivation was given by Grimshaw [3]. Note that here in the absence of a shear flow,
AB > 0, Ay > 0 so that the KP part here is KPII and the rotational part is the regular Ostrovsky equation.

In this note we determine the coefficients B, y when there is a background shear flow present. The
expression for y when there is no y-variation was derived by Grimshaw [7] using a formal asymptotic
expansion, and here we reproduce that result using an alternative approach based on linear long wave
theory. At the same time we derive the expression for  when there is a shear flow. But note that in the
presence of background rotation a shear current leads to a term in the basic state, the Coriolis term fp u,
in the y-momentum equation, which in an inviscid conservative model needs to be balanced by a pressure
gradient in the y-direction. However, this introduces a (weak) dependence on y, which is a complication we
avoid here by supposing instead that this Coriolis term is balanced by a z-dependent body force. The case
when there is a weak y-dependence will be addressed in a future study.

Rotational and transverse dispersion terms for a shear flow. Since both the terms of interest in
equation (3) are linear and in the long wave regime, it is sufficient to consider only the linear long wave
equations. Relative to a background shear flow u and a background density field p, and on an f-plane,
these are, in the domain -4 <z <0,

p(u, +uu +u w—eFV+p =0, (5)
p(V, +uV +Fu)+ Fup+p, =0, (6)
p.tgp=0, (7)

u +elY+w =0, ®)
C+ul —w=0, )

p, Tup +wp, =0. (10)

Here we have used a standard notation,  is the vertical particle displacement and we have put ¥ = gy,
V' =¢evand F = gf to represent the slow scales for transverse dependence and the background rotation. The
boundary conditions are

w=0; atz=—h, (11)

p—8gp,5=0;atz=0. (12)

It is convenient to look at the linear long wave theory in Fourier space, for a disturbance proportional
to exp(ikx — ikct). Then equations (5)—(10) become, after eliminating w, p,

p,(—ikW(u +u C) — e*FV) + ikp = 0,
p(—ikWV + Fu) — Fup, C+pY =0,
pN?C +pz=0, (13)
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iku + VY — ik(W()z =0, (14)

where W = ¢ —u,. Next we use (17) to eliminate u and so obtain in place of (14), (15),
p(—kW*C_+ eX(WV ,— FV)) + ikp = 0, (15)
pW(=ikV + FC) — F(u,p,) .G +p,=0. (16)

Together with (13) these form three equations for &, p; V. The final step is to eliminate p between (13)
and (15) to obtain
(pOWQC_}Z)Z + p()]\ﬂc = 82G7 ~h<z< O,

ikG = {p,(WV,—FV)}..
The boundary conditions (11), (12) can likewise be reduced to

C=0;atz=-h,
W —gl=¢H;atz=0,
ikH=WV,~FV.

Next, we expand in powers of &2,
C=Aop(z)+eC +...,c=c, T &%, + ...,
Here we have anticipated that at the leading order we obtain the modal equations (1) and (2), and the
amplitude 4 depends parametrically on £, ¢, Y. Then at the next order we get that
(p(WC). + pV°C, = G ==2¢,(pW,0), + G, ~h <z <0, (17)
0, =0,z=-h; Wlp,_—go =H =-2cWpo +Hz=0. (18)

Here the terms G, H are evaluated using the leading order expressions for € and p in (19), so that equations
(17), (18) are a forced version of the modal equation. For a solution to exist, a compatibility condition must
be satisfied. This is

0
I G,odz = [pOHl(p]z=0 . (19)
Substituting from (17), (18) we get thl:it
iklc,A— jf po Wy V,—FV )¢.dz=0, (20)
while V can be evaluated to leading order ti;iom (16),
ikp, W,V =p,Wi9.A,— Flpu,).A¢ + p FW A¢.. (21)
Substitution of (21) into (20) leads to
kKcA+PA, +FBA,—vFPA=0, (22)

0
B= [ pJyeld: ,
O—h
1B, =~ [ (py ), .02 (23)
—h

0
I'}/ = J. qu)(Pde 5 p()W()(D = pOW()(PZ - (pouo)z(P'
Zh

We now convert the Fourier variables to physical space, using kc, <> i0/0t and k <> —i0/0x. Restoring
the nonlinear terms and the linear dispersive term we conclude that (22) is equivalent to

{At+pd4 +rA4_} + BAW + BfAy —vf?4=0. (24)

Here we have restored the unscaled variables y; f.
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Discussion. In this note we have extended the analysis of Grimshaw [7] for the Ostrovsky equation
in the presence of a background shear flow to the rotation-modified KP equation. The outcome is equation
(24). We see that in comparison to (3), there is an extra term, f4 with coefficient B, due to the combined
effect of rotation, transverse variations and the presence of a shear current.

In the absence of a shear current, 8, = 0 and B, y reduce to (4). The coefficient B of the term A has the
same sign as A, and can be written in the form

0
p=o- Ly,
2 I

Hence the shear current provides a small correction term relative to ¢ /2, which can be expected to
be relatively positive or negative according as u0 is negative or positive. The amended coefficient y of
the term /A4 agrees with that obtained by Grimshaw [7] in the absence of y-variations. It can usually be
expected to have the same sign as A, but may have the opposite sign if the shear current is sufficiently
strong, see Alias et al. [8].

The most interesting outcome here is the presence of the term in fAy which arises only when there is
rotation, a shear current and transverse variations. However, we caution that this extra term has this form
because we have chosen here to balance the Coriolis term fp u, in the basic state with a body force, rather
than a pressure gradient in the y-direction. Nevertheless, its presence here implies that in the linearised
theory the linear dispersion relation for solutions proportional to exp(ikx + ily — iwt) is

wk + MK — BP + if B 1 —yf> =0,

The complex term here implies that either there is an instability with growth rate /B //k, or that the
y-wavenumber / is complex-valued with an imaginary part i f/2. Neither consequence is satisfactory,
implying that the more complicated theory is needed, when the Coriolis term fpu, is balanced by a
pressure gradient in the y-direction, with a consequent y-dependence of all terms in the basic state. But
we note that in the latter case the offending term can be removed in the linearized equation by putting
A= A" exp(-fBy/2B), when the same equation is obtained, but there is no term in A/ and the coefficient y
is changed to y — B, °/4B. However, there is then a consequence that the nonlinear coefficient p is replaced
by pexp(—f py/2p).

Finally we note that the coefficient B, is non-zero even in the Boussinesq approximation, when p in
(23) can be regarded as constant, and at the upper boundary ¢ ~ 0. In this limit

0 2
P
~ u, —dz.
Bl J.hpO 0zz 2

Thus B, is non-zero in general unless u_ = 0.
ZZ
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