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Влияние фонового течения в моделях длинных нелинейных внутренних волн

Уравнение Кортевега—де Вриза является стандартной моделью для описания динамики 
длинных нелинейных внутренних волн в океане. Когда принимаются во внимание сла-
бые воздействия вращения Земли и поперечных возмущений, то уравнение изменяется к 
форме так называемого модифицированного уравнения Кадомцева—Петвиашвили с вра-
щением. В этой короткой статье дана ревизия асимптотической процедуры вывода этого 
уравнения с учетом фонового сдвигового течения так же, как и фоновой стратификации.
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Effect of a Background Shear Current on Models for Nonlinear Long Internal Waves

The Korteweg—de Vries equation is a standard model for the description of long nonlinear internal 
waves in the ocean. When the effect of weak transverse variations and the Earth's background rotation 
are taken into account, this is replaced by the rotation-modified Kadomtsev—Petviashvili equation. In 
this short note we revisit the asymptotic derivation of this equation, incorporating a background shear 
flow as well as the background stratification.
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It is well known that the internal solitary waves commonly observed in the coastal ocean can be 
modelled by the Korteweg—de Vries (KdV) equation, or a related equation, see the reviews by Grimshaw 
[1] and Helfrich and Melville [2] for instance. When expressed in a reference frame moving with the linear 
long wave speed c0, the KdV equation is

At + μAAx + λAxxx = 0.

Here x, t are space and time coordinates, and A(x, t) is the amplitude of the linear long wave mode j(z) 
corresponding to the linear long wave phase speed c0, which is determined from the modal equation, given by

(r0W0
2jz)z + r0N2φ = 0; W0 = c0 – u0(z); –h < z < 0;                                        (1)

φ = 0 at z = 0; and W0
2jz = gφ at z = 0.                                               (2)

Here ρ0(z), u0(z) are the background density and current respectively and ρ0N2 = –gρ0z. The fluid occupies 
the domain between the rigid bottom z = –h and the free surface at z = 0. The coefficients μ and λ are given 
by certain integrals involving the modal function,
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However, oceanic internal waves are often observed to propagate for long distances over several 

inertial periods, and hence the effect of the Earth's background rotation needs to be taken into account. At 
the same time it may be necessary to take account of weak dependence on the transverse variable y. The 
simplest model equation which takes account of both these effects is the rotation-modified Kadomtsev—
Petviashvili (KP) equation, see Grimshaw [3],
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{At + μAAx + λAxxx}x + βAyy – γf 2A = 0.                                               (3)

Here f is the Coriolis parameter measuring the Earth's rotation. This is an extension of the KP equation, 
see Kadomtsev and Petviashvili [4], which includes the y-variations on the one hand, and of the Ostrovsky 
equation, see Ostrovsky [5] for the original derivation or Grimshaw and Helfrich [6] for a recent account, 
which includes the rotational term on the other hand. In the absence of a background shear flow, that is 
u0(z) ≡ 0,
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The explanation for these expressions lies in the linear dispersion relation for long waves, which is  
ω2 ≈ c0

2(k2 + l2) + f2, for a frequency ω and wavenumbers k, l in the x, y-directions respectively. The 
dominant balance is ω ~ kc0, and moving to the reference frame moving with speed c0 and adding the next 
order cubic linear dispersive correction, leads to the KdV equation. When weak y-dispersion (l2 << k2) 
and weak rotation are added, this becomes ω ~ kc0 + c0l2/2k + f2/2kc0, and so leads to equation (3). A more 
formal asymptotic derivation was given by Grimshaw [3]. Note that here in the absence of a shear flow, 
λβ > 0, λg > 0 so that the KP part here is KPII and the rotational part is the regular Ostrovsky equation.

In this note we determine the coefficients β, g when there is a background shear flow present. The 
expression for g when there is no y-variation was derived by Grimshaw [7] using a formal asymptotic 
expansion, and here we reproduce that result using an alternative approach based on linear long wave 
theory. At the same time we derive the expression for β when there is a shear flow. But note that in the 
presence of background rotation a shear current leads to a term in the basic state, the Coriolis term fρ0u0 
in the y-momentum equation, which in an inviscid conservative model needs to be balanced by a pressure 
gradient in the y-direction. However, this introduces a (weak) dependence on y, which is a complication we 
avoid here by supposing instead that this Coriolis term is balanced by a z-dependent body force. The case 
when there is a weak y-dependence will be addressed in a future study.

Rotational and transverse dispersion terms for a shear flow. Since both the terms of interest in 
equation (3) are linear and in the long wave regime, it is sufficient to consider only the linear long wave 
equations. Relative to a background shear flow u0 and a background density field ρ0, and on an f-plane, 
these are, in the domain –h < z < 0,

ρ0(ut + u0ux + u0zw – e2FV + px = 0,                                                   (5)

ρ0(Vt + u0Vx + Fu) + Fu0ρ + pY = 0,                                                  (6)

pz + gρ = 0,                                                                      (7)

ux + e2VY + wz = 0,                                                                 (8)

zt + u0zx – w = 0,                                                                  (9)

ρt + u0ρx + wρ0z = 0.                                                             (10)

Here we have used a standard notation, z is the vertical particle displacement and we have put Y = ey, 
V = ev and F = ef to represent the slow scales for transverse dependence and the background rotation. The 
boundary conditions are

w = 0; at z = –h,                                                                  (11)

p – gρ0z = 0 ; at z = 0.                                                            (12)

It is convenient to look at the linear long wave theory in Fourier space, for a disturbance proportional 
to exp(ikx – ikct). Then equations (5)–(10) become, after eliminating w, ρ,

ρ0(–ikW(u + u0zz) – e2FV) + ikp = 0,

ρ0(–ikWV + Fu) – Fu0ρ0zz + pY = 0,

ρ0N2z + pz = 0,                                                                 (13)
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iku + e2VY – ik(Wz)z = 0,                                                        (14)

where W = c – u0. Next we use (17) to eliminate u and so obtain in place of (14), (15),

ρ0(–ikW2zz + e2(WVY – FV)) + ikp = 0,                                              (15)

ρ0W(–ikV + Fzz) – F(u0ρ0)zz + pY = 0.                                              (16)

Together with (13) these form three equations for z, p; V. The final step is to eliminate p between (13) 
and (15) to obtain

(ρ0W2zz)z + ρ0N2z = e2G, –h < z < 0, 

ikG = {ρ0(WVY – FV)}z.

The boundary conditions (11), (12) can likewise be reduced to

z = 0 ; at z = –h,

W2 zz – gz = e2H; at z = 0,

ikH = WVY – FV.

Next, we expand in powers of e2,

z = Aφ(z) + e2z1 + …, c = c0 + e2c1 + …,

Here we have anticipated that at the leading order we obtain the modal equations (1) and (2), and the 
amplitude A depends parametrically on k, c, Y. Then at the next order we get that

(ρ0(W0
2z1z)z + ρ0N2z1 = G1 = –2c1(ρW0φz)z + G, –h < z < 0,                               (17)

φ1 = 0, z = –h; W0
2φ1z – gφ1 = H1 = –2c1W0ρ0φz + H, z = 0.                               (18)

Here the terms G, H are evaluated using the leading order expressions for z and p in (19), so that equations 
(17), (18) are a forced version of the modal equation. For a solution to exist, a compatibility condition must 
be satisfied. This is
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Substituting from (17), (18) we get that
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while V can be evaluated to leading order from (16),

ikρ0W0V = ρ0W0
2φzAY – F(ρ0u0)zAφ + ρ0FW0Aφz.                                       (21)

Substitution of (21) into (20) leads to

k2c1A + βAYY + Fβ1AY – gF2A = 0,                                                  (22)
0
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We now convert the Fourier variables to physical space, using kc1 ↔ i∂/∂t and k ↔ −i∂/∂x. Restoring 
the nonlinear terms and the linear dispersive term we conclude that (22) is equivalent to

{At + μAAx + λAxxx}x + βAyy + β1fAy – gf 2A = 0.                                        (24)

Here we have restored the unscaled variables y; f.
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Discussion. In this note we have extended the analysis of Grimshaw [7] for the Ostrovsky equation 
in the presence of a background shear flow to the rotation-modified KP equation. The outcome is equation 
(24). We see that in comparison to (3), there is an extra term, fAy with coefficient β1, due to the combined 
effect of rotation, transverse variations and the presence of a shear current.

In the absence of a shear current, β1 = 0 and β, g reduce to (4). The coefficient β of the term Ayy has the 
same sign as λ, and can be written in the form
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Hence the shear current provides a small correction term relative to c0/2, which can be expected to 
be relatively positive or negative according as u0 is negative or positive. The amended coefficient g of 
the term f2A agrees with that obtained by Grimshaw [7] in the absence of y-variations. It can usually be 
expected to have the same sign as λ, but may have the opposite sign if the shear current is sufficiently 
strong, see Alias et al. [8].

The most interesting outcome here is the presence of the term in fAy which arises only when there is 
rotation, a shear current and transverse variations. However, we caution that this extra term has this form 
because we have chosen here to balance the Coriolis term fρ0u0 in the basic state with a body force, rather 
than a pressure gradient in the y-direction. Nevertheless, its presence here implies that in the linearised 
theory the linear dispersion relation for solutions proportional to exp(ikx + ily − iωt) is

ωk + λk4 − βl2 + if β1l − gf 2 = 0.

The complex term here implies that either there is an instability with growth rate f β1l/k, or that the 
y-wavenumber l is complex-valued with an imaginary part iβ1f/2β. Neither consequence is satisfactory, 
implying that the more complicated theory is needed, when the Coriolis term fρ0u0 is balanced by a 
pressure gradient in the y-direction, with a consequent y-dependence of all terms in the basic state. But 
we note that in the latter case the offending term can be removed in the linearized equation by putting 
A = A´ exp(−f β1y/2β), when the same equation is obtained, but there is no term in Ay´ and the coefficient g 
is changed to g − β1

2/4β. However, there is then a consequence that the nonlinear coefficient μ is replaced 
by μ exp(−f β1y/2β).

Finally we note that the coefficient β1 is non-zero even in the Boussinesq approximation, when ρ0 in 
(23) can be regarded as constant, and at the upper boundary j ≈ 0. In this limit
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Thus β1 is non-zero in general unless u0zz ≡ 0.
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