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JAJIBHUE I1OJIA HOBEPXHOCTHbBIX 'PABUTAIIMOHHBIX BOJIH
OT BBICTPOJABMKYIIETOCSI OCHULJINPYIOIEIO HCTOYHUKA BO3MYIIIEHUI

Crarpst nocrynuia B pepakuuio 27.03.2018, nocie gopadorku 17.11.2018.

B pabote nccnenoBaHbl JaabHAE OIS TOBEPXHOCTHBIX BOIHOBBIX BO3MYILECHHH OT OCIHIJUIMPYIOMIETO JOKAIN30BaH-
HOTO MCTOYHHKA, OBICTPO ABIIKYIIETOCS B TSDKEIION KUAKOCTH OCCKOHEUHOH TTyOuHBI. B030ysk1aemble Moms MpeacTas-
JISIFOT cO00M CyMMY JIBYX KIIMHOBHIHBIX KOPAOEJIBbHBIX BOJIH, KOTOPBIE 3aKII0YEHBI BHYTPH COOTBETCTBYOIIMX BOTHOBBIX
kiHbeB. Kasknas u3 Bo30yKaaeMbIX JIBYX BOJIH IPEACTABISET COOOH CIOKHYIO BOJIHOBYIO CUCTEMY ITOTIEPEUHBIX U MPO-
JIOJIbHBIX BOJTHOBBIX BO3MYILEHHH. M3y4eHbl CBOMCTBA ANCTIEPCHOHHBIX KPUBBIX U PACCUUTAHBI ()a30BbIC KAPTHHBI, OIH-
CBIBAIOIINE CTPYKTYPY BOJHOBBIX TTOBEPXHOCTHBIX BO3MYIICHUH. V3ydeHbl XapakTepPHUCTHUKH BO30YXK/1a€MbIX BOJIHOBBIX
T0JIeH B 3aBHCUMOCTH OT OCHOBHBIX ITapaMETPOB BOJHOBOM I'€HEpPAlMU: CKOPOCTH IBMKECHUSI NICTOYHUKA BO3MYIIICHUH
1 9acCTOTHI €ro ocHuUIMiA. [TocTpoeHs! paBHOMEPHBIE ACHMITOTHYECKUE PEIICHNUS, BRIPAKAIOIIHECT dyepe3 (QyHKIIHNIO
Oiipu U ee TPOU3BOAHYIO, O3BOJISIONINE OMHMCHIBATh JAIbHNE MOJIS TOBEPXHOCTHBIX BO3MYIIIEHHH KaK BHE, TaK U BHYTPH
COOTBETCTBYIOIINX BOITHOBBIX KIINHBEB.
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In the paper, the far fields of surface wave perturbations excited by an oscillating localized source rapidly moving in
a heavy liquid of infinite depth are studied. It is shown that the excited fields are a sum of two wedge-like waves located
insider the corresponding wave wedges. Each of the excited two waves is a complicated wave system of transverse and
longitudinal perturbations. The properties of the dispersion curves are studied and the phase pictures describing the
structure of wave surface perturbations are calculated. The characteristics of the excited wave fields are studied depending
on the basic parameters of the wave generation such as the velocity of motion of the perturbation source and the frequency
of its oscillations. Uniform asymptotic solutions are constructed in terms of the Airy function and its derivative, which
permits describing the far fields of surface perturbations both outside and inside the corresponding wave wedges.
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Introduction. The surface wave motions in the marine environment can either originate due to natural
causes (wind waves, flow past underwater obstacles, bottom relief variations, density and flow fields) or be
generated by the flow past natural obstacles (platforms, underwater pipelines, complex hydraulic facilities).
The general system of hydrodynamic equations describing the surface perturbations is a rather complicated
mathematical problem from the standpoint of proving the existence and uniqueness theorems for solutions
in the corresponding function classes and from the computational standpoint [1—6]. In the framework of
the linear theory, the surface wave perturbations are analytically studied by integral representation methods
and various asymptotic methods [7—11]. The main results of solving the problems of generation of surface
wave perturbations are represented in most general integral form, and to obtain the integral solutions, it is thus
necessary to develop asymptotic methods for their investigation which admit a qualitative analysis and rapid
estimations of the obtained solutions. Moreover, to analyze the data of the sea surface remote sensing, it is
required to know the causes of various surface phenomena [5].

To obtain a detailed description of a wide class of physical phenomena related to the dynamics of surface
perturbations in inhomogeneous and unsteady natural environments, it is necessary to have sufficiently
developed mathematical models. The fact that the structure of the heavy sea surface is three-dimensional is
also significant, and there are currently no possibilities for large-scale computational experimental modeling of
three-dimensional ocean flows at large times with a sufficient accuracy. But in several cases, the initial qualitative
concept of the considered class of wave phenomena can be obtained by using simpler asymptotic models and
analytic methods for studying them. In this connection, it is necessary to mention the classical hydrodynamic
problems of constructing asymptotic solutions which describe the evolution of surface perturbations excited
by sources of various nature in heavy homogeneous liquids. The model solutions permit further obtaining
representations of surface wave fields with regard to variability and unsteadiness of real natural environments.
So several results of asymptotic analysis of linear problems describing different regions of generation and
propagation of surface perturbations also underlie the currently actively developing nonlinear theory of
generation of ocean waves of extremely large amplitude, the so-called rogue waves [6]. The contemporary
state of the art in the study of linear and nonlinear surface perturbations can be found in [5].

In [12], the problem of constructing uniform asymptotics of far fields of surface perturbations due to an
oscillating source moving with a bounded velocity was considered. The goal in the present paper is to construct
uniform asymptotics of far fields of surface perturbations excited by the fast motion of a localized oscillating
source of perturbations in a heavy homogeneous liquid of infinite depth.

1. Problem formulation and integral forms of solutions. We consider the steady-state pattern of wave
perturbations on the surface of an ideal heavy liquid of infinite depth when the perturbation source moves with
velocity V' in the positive direction of the axis x. The waves are generated by a moving oscillating point
source of perturbations located at the depth H (the axis z is directed upwards from the unperturbed liquid)
whose capacity varies by the law g = exp(iw?) exp(st)(— w<t< oo). Further, we seek the limit as € — 0 in
the obtained solution. The perturbation of the potential ®(x, y,z,t) with respect to the homogeneous flow
moving with velocity V' (V® = (u,v,w), where u,v,w are components of the vector of perturbations of the
velocity (V,0,0)) is described by the following equation with an appropriate linearized boundary condition
on the surface of the liquid [1—3, 12].

AD(x,y,z,t) =exp(iot)exp(et)d(x)d(y)d(z+ H), z<0
2
(£+Vij ®+g8£=(), z=0. M
ot Ox 0z

Here A is the three-dimensional Laplace operator, and 8(x) is the Dirac delta function. We seek the
solution of problem (1) in the form ®(x, y, z,t) = exp(iowt) exp(et)d(x, v, z) , where the function ¢@(x,y,z)
is determined from the problem

AQ(x,y,2) =3(x)0(¥)0(z+ H) z<0,
2
(im+s+ViJ (p—i—ga—(p:O,z:O.
ox 0z

The Fourier transform of the potential ¢(x,y,z),
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0

Q. v.z) = [ exp(ip)dx [ exp(ivy )o(x,y,2) dy.

is determined from the boundary-value p_r:blem -

0’Q

FOYE) o uv)=5(+H). z<0.

Z
Q
(i + g—iuV)2 Q(u,v,z)+ g%,v,z) =0, z=0,
Z
2

Q(p,v,z)—) 0, z—> —, k2 :uz +v7,
whose solution in the domain — H < z <0 has the form

(0—pVY sh(kz) + g ch (kz)

> .
k exp (kH)((s +i(0- uV))) +gk)
The free surface elevation n(x, y,#) is related to the potential d(x, y,z,¢) by the condition [1—3, 12]

Q(;,L,v,z)= -

n(x,y,t)= —§(§+V§j®(x,y,z,t):W(i(m—is))w(z,y,z)+VWJ,z =0.

Then the Fourier transform A(p,v,?) of the function n(x, y,¢) becomes
i(0—puV )exp (iot)exp (—kH )
(8+i(03—uV))2+gk '
In the obtained expression, the parameter € is preserved only in the denominator, which is necessary to

determine the displacement of the pole of the integrand with respect to the real axis (into the upper or lower
half-plane). Then we can obtain the inverse Fourier transform

T exp(—ivy)dv T (@

A(},L,v,t)z

_iexp(iot)

—pV) exp(—kH —ipx)dp
41 '

(e+i(0—ph)) + gk

n(x, y,1) )

The zeros of the denominator in the integrand in (2) determine the dispersion relation:
B(o,u,v)=(o- uV)2 - g\luz +v2 =0. The set of values of the parameter M =Vw/g >0 is divided

by two characteristic values 1/4 and V6 /9 into three intervals (see Fig. 101,102 [2]). For M <1/4, the
dispersion curve consists of three branches, one closed and two non-closed, this case was considered in [12].
In this case, the wave picture is a sum of two wedge-like (longitudinal) waves with half-opening angle of the

wave wedge less than /2 and the annular-like (transverse) waves around the source. For M > \/g /9, the
dispersion curve consist of two unclosed branches without extrema. In this case, the wave picture is a sum of two

wedge-like ship waves with the half-opening angle of the wave wedge less than ©/2.1f 1/4 <M < \/g /9,
then the dispersion curve consists of two unclosed curves one of which has two local extrema. One branch of
the dispersion curve corresponds to the usual wedge-like waves with the half-opening angle of the wave wedge
less than 1/ 2, and the second branch corresponds to the ship waves with the half-opening angle of the wave
wedge greater than 11/2 (the wave front is directed upstream away from the source). This system of hybrid
waves simultaneously has the features of both the annular (transverse) and wedge-like (longitudinal) waves.

Further, we consider the case M > \/g /9 . Then the integrand in the inner integral in (2) has two real poles
K, Figure 1 illustrates the results of calculations of the corresponding dispersion curves “1 , (v) Here and

below, the following parameters of calculations were used: H=5m, ® = 0.5 s—1, and V=30 m/s.

2. Construction of asymptotics of the solutions. To calculate the inner integral in (2), it is necessary to
determine the displacement of the poles Ap for € > 0 . For this, we equate the denominator of the integrand in

the inner integral in (2) with zero for e=0: B(o,u,v)=0, and for €>0: B(w—ig,u+Ap,v)=0. Then
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we obtain: Ap = iaa—B / (Z—BJ . Under the assumption that = o(, v), we have Z—B / (a—BJ =-1/ (6_03}
[0}

fo[0) u ou ou
el . 16/0) )
and Ap=—ig/ 6_ . With regard to 8_ > 0, we see that both poles move into the lower half-plane. Then,
[ [

for x < 0, the contour of integration over the variable p in (2) becomes closed in the upper half-plane, and the
poles V) (v) do not make contributions to the wave field. For x > 0, the contour of integration over p in (2)
becomes closed in the lower half-plane and, taking into account the contributions of the poles, we obtain

N, v, 0) = 1(x, 3,0 + I.(x, y,1) , €)
L%y = [ F(,(v), V) exp(=ixS,,(v,))dv

exp(iot) (o—ulV)exp(—kH

Flu (v),v) = plior) (0—pV)exp(-kH)
2n 2V(o—wV)+ug/k

Sa(v,o)=p (V)+vigo,tgoa=y/x, m=12.

For large value of x > 0, the asymptotic behavior of the integrals in the sum (3) is completely determined by

!
the stationary points of the phase function §,, (V, OL) whigh are determined from the equation pu (V) =—tgo.
First, we consider the first term in (3). The function K, (v) has one maximum on the interval of integration

over the variable associated with the corresponding value of the argument o, which is further denoted by 4, .
The value 4, determines the boundaries of the wave wedge which are described by the equation y = tx tg 4,.

For 0 <a < 4,, the phase function §,(v, o) has two stationary points on the real axis v: 0 <y, (o) <y (0.
For A} < a <m/2, there are two complex conjugate stationary points yy (o), ,(a) , and for definiteness, we
assume that Imy, (a0) > 0.

We introduce the notation: @, =—p,(v)—vy+of. Then from the phase stationarity condition
p(v)=—tgo, we can obtain the parametric equations of the family of constant phase lines @, =C

(C = const) for different values of C':

X(v) = ot C’ )= (V) (ot ’C).
(V) = v (v) (V) = v (v)

Figure 2 shows the lines of equal phase for t =0, C =2nn, n=-5,-4,...,5. The right-hand branch
(n > 0) of the dispersion curve L, (V) corresponds to with the upper part of the picture ( > 0). Since the phase
portrait of the waves is symmetric with respect to the axis x, we further consider only this domain. Point 4 in
fig. 1 is the deflection point of the curve p,(v), i.e., a root of the equation p(v) = 0. Therefore, the value A4
is associated with the wave wedge boundary (dashed line in fig. 2) inside which the traveling waves described
by the integral /| are propagating. Point B in fig. 1 is a root of the equation p;(v)=p/v and is associated
with dashed line 4 in fig. 2. The part of the dispersion curve from zero to point A (fig. 1) is associated with
transverse crests of the waves (solid lines 2 in fig. 2). The part of the dispersion curve from point A to point
B in fig. 1 is associated with longitudinal crests (solid lines /a in fig. 2) located between dashed lines 3 and
4 in domain /. The part of the dispersion curve to the right of point B (fig. 1) is associated with longitudinal
crests (solid lines /b in fig. 2) located between the dashed line 4 and the axis x (domain // in fig. 2). On the
crests of longitudinal waves in domain / and on the crests of the transverse waves, the phases @ take the
values 27/ (l = —1,—2,..,—5). The phases of the crests of longitudinal waves in domain II in fig. 2 are equal to
2k (k = 1,2,..,5) . On dashed line 4, the wave phase @7 is zero for # = 0. The longitudinal waves in domain /
and the transverse waves propagate from the origin to infinity. The longitudinal waves in domain // propagate in
the direction of dashed line 4. We present the basic characteristics of the wave field for the following parameters
of calculations: the wave length along the horizontal axis is A; =27/, (0)=828.8m, the half-opening
angle of the wave wedge is 4, = 20.3°, and the wave front is given by the equation y =xtg 4,.
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Fig. 1. Dispersion curves W,(V) and W,(v); A and D are deflection points,

and B is a root of the equation LL; v)=pn/v.
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Fig. 2. Lines of equal phase for the integral /] : lines la correspond to longitudinal waves in domain 7,
lines 15 correspond to longitudinal wave in domain /7, lines 2 correspond to transverse waves,
line 3 indicates the wave front, and line 4 separates domains / and /1.

Puc. 2. Jluauu paBHo# dassl ayis unTerpana | | : TuHMY 1a — NpooNbHEIE BOIHBI 001ACTH /, TUHUHU 15 — 1Ipo0IbHbIE
BOJIHBI B 00J1acTH /1, TMHUM 2 — TONIEpeyuHbIe BOJHBIL, JIMHUS 3 — BOJHOBOM (pOHT, HUs 4 pazaensier obnactu [ u /1.

Inside the wave wedge, the field can be calculated by the method of stationary phase, then the contribution
is made by both of the stationary vy (a),),(a) , and the field is exponentially small outside the wave wedge.

The asymptotics of the integral [,(x,y,t) for large x > 0 calculated by the method of stationary phase has

the form

1(x,3,t) ~ T+,
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1/2

) Rl )y (@)
T:= " 1y ),y la E:
x“'(Vi(OL))‘ HvAEY

Ei=exp(=ix(UL (y (o) +p (@) tg o)) —imsign(U” (y () /4), i=12.
The asymptotics calculated by the method of stationary phase is not uniform, because the stationary

points merge on the wave front: vl(Al) = Vz(Al) and l"l’”l(Vl(Al)) = H”](V2(A1)) =0 . Therefore, the

asymptotics calculated by the method of stationary phase cannot be applied near the boundary of the wave
wedge. The uniform asymptotics of [,(x, y,¢) for x > 0 applicable at far a distance from the wave front and
near it has the form

11 yot) = ZERUEDEOD) (56 fo(0)) + G—fo@ i 0@y~ @
(G5(0))=G(fo(0)) 1 25
2xY 31/6( o)

Ma)=(S,(v(a),0) + S, (v, (), )/ 2,
6(0) = (3(S, (v (@), )5, (v (@) ))/ 4) .

G({o(a) = F(w,(m(a)),p,(a))

G(—o(a)) = F(u(va(a), p, (), |[—7 ——

1 o0
where 4 (t)= p I cos (Tt -t / 3)1 isthe Airy functionand Ai'(t) is the derivative of the Airy function. The
T —o0

asymptotic (4) becomes non-uniform if the Airy function and its derivative are replaced by the corresponding
expansions for large values of the argument.

Further, we consider the contribution of the dispersion curve W,(V) to the resultant wave field.
Figure 3 presents the lines of equal phase of the integral 7, (x, y,t) for t=0, C=2nn, n=-1,-2,...,-5.
The upper half of fig. 3 (¥ >0) corresponds to the left branch of the dispersion curve W,(v) (n <0). The
part of the dispersion curve from zero to point D in fig. 1 is associated with transverse waves (solid lines 2
infig. 3). The part of the dispersion curve from point to infinity is associated with longitudinal waves (solid lines /
in fig. 3). The deflection point is associated with the wave front y = xtg 4, (dashed line 3 in fig. 3), where the
half-opening angle of the wave wedge is 4, =10.1°. All lines of equal phase go from the origin to infinity.
The length of the transverse wave along the horizontal axis x is A, =2n/p,(0)=171.5 m. The uniform
asymptotics of the integral J,(x, y,t) for large x >0 are estimated similarly to (4). We note that the waves
described by the integral I, significantly (approximately by a factor of three) exceed in amplitudes the waves
determined by the integral /.

The above numerical calculations show that an increase in the velocity V' of motion of the source (for
a fixed frequency ® of the source oscillations) leads to a decrease in the half-opening angles of both of the
wave wedges. In this case, the distance between the neighboring wave crests increases; in particular, there is
an increase in the lengths of transverse waves A, and A, along the axis x . In table 1, we present the results of

numerical calculations of the main parameters of the excited waves for different values of V.
In fig. 4 results of calculations of the integrals 7,(x,y,t) for t =0,y =100 m and for various values

M =Vw/ g are presented. Calculations show that as the parameter M increases, the wavelengths increase

and the amplitudes of the excited fields decrease. The integral ;(x,y,f) when a parameter M changes
behaves similarly.
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Fig. 3. Lines of equal phase for the integral /5 : lines / are longitudinal waves,
lines 2 are transverse waves, and line 3 is the wave front.

Puc. 3. Jluauu pasHoii (asel as uaTerpana | D : IMHUM | — TIPOJOJIbHEIE BOJIHEL,
JMHUH 2 — TIOTIEPEYHbIE BOJHBI, JIMHUS 3 — BOJHOBOH (DPOHT.
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Fig. 4. The integral [ for different values of parameter M : M =1 —line I, M =1.5 —line2, M =2 — line 3.

Puc. 4. Unrerpan [ s pasmuunsix 3nadennii napamerpa M :

M=1—munuus 1, M =1.5 — munun 2, M = 2 — nunmus 3.
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Fig. 5. Uniform asymptotics of the integral /| at a far distance from the moving source.

Puc. 5. PaBHOMepHbIE aCHMITOTUKHN MHTerpana [ ] BIAIK OT ABHXKYIIETOCSA MCTOYHHKA.
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Fig. 6. Uniform asymptotics of the integral /5 at a far distance from the moving source.

Puc. 6. PaBHOMepHLIe ACUMIITOTUKH MHTErpaia 12 BJaJid OT ABMXKXYIICTOCA NUCTOYHUKA.

Figures 5 and 6 present the results of calculations of uniform asymptotics of the integrals 7,(x, y,¢) and
I.(x,y,t) for £ =0. The sum of these terms describes the total field of the free surface elevation at a far
distance from the moving oscillating source of perturbations.
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Table 1
Wave generation parameters dependence from source velocity
3aBHCHMOCTH TAPaMeTPOB BOJTHOBOI reHepalii 0T CKOPOCTH MCTOYHHKA

V,m/s 5.334 6 10 20 30 50

M \/3/9 0.306 0.510 1.020 1.531 2.551

A degree 90 75.7 458 26.9 20.3 14.6

}“1 — 27'5/}11(0),771 368.2 382.2 463.6 652.1 828.8 1163.7

Ao, degree 15.6 15.3 13.7 11.5 10.1 8.5

7‘“2 — 27_[/“2(0) m 12.2 14.9 34.1 96.9 171.5 339.3

Conclusion. The far fields of surface wave perturbations excited by an oscillatin glocalized source rapidly
moving in a heavy liquid of infinite depth are studied. The excited fields are a sum of two wedge-like ship waves
located insider the corresponding wave wedges. Uniform asymptotic solutions are constructed in terms of the
Airy function and its derivative, which permits describing the far fields of surface perturbations both outside
and inside the corresponding wave wedges. Each of the excited two waves is a complicated wave system of
transverse and longitudinal perturbations. It is shown that the amplitude of one wave system is several times
greater than the amplitude of the other wave system. The properties of the dispersion curves are studied and
the phase pictures describing the structure of wave surface perturbations are calculated. The characteristics of
the excited surface perturbations were studied depending on the basic parameters of the wave generation such
as the source motion velocity and the frequency of its oscillations. The obtained asymptotics of surface wave
far fields allow one efficiently to calculate the basic characteristics of wave fields and, in addition, qualitatively
to analyze the obtained solutions, which is important for obtaining the well-posed statements of mathematical
models of wave dynamics of surface perturbations of real natural environment.

The research was carried out in the framework of the Federal target program, projects N. 0149-2018-0003
(1. Yu. Viadimirov) and N. AAAA-A17-117021310375-7 (V. V. Bulatov, Yu. V. Viadimirov).
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