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ДАЛЬНИЕ ПОЛЯ ПОВЕРХНОСТНЫХ ГРАВИТАЦИОННЫХ ВОЛН  
ОТ БЫСТРОДВИЖУЩЕГОСЯ ОСЦИЛЛИРУЮЩЕГО ИСТОЧНИКА ВОЗМУЩЕНИЙ

Статья поступила в редакцию 27.03.2018, после доработки 17.11.2018.

В работе исследованы дальние поля поверхностных волновых возмущений от осциллирующего локализован-
ного источника, быстро движущегося в тяжелой жидкости бесконечной глубины. Возбуждаемые поля представ-
ляют собой сумму двух клиновидных корабельных волн, которые заключены внутри соответствующих волновых 
клиньев. Каждая из возбуждаемых двух волн представляет собой сложную волновую систему поперечных и про-
дольных волновых возмущений. Изучены свойства дисперсионных кривых и рассчитаны фазовые картины, опи-
сывающие структуру волновых поверхностных возмущений. Изучены характеристики возбуждаемых волновых 
полей в зависимости от основных параметров волновой генерации: скорости движения источника возмущений 
и частоты его осцилляций. Построены равномерные асимптотические решения, выражающиеся через функцию 
Эйри и ее производную, позволяющие описывать дальние поля поверхностных возмущений как вне, так и внутри 
соответствующих волновых  клиньев.

Ключевые слова: поверхностные гравитационные волны, дальние поля, быстродвижущийся источник, 
равномерные асимптотики
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In the paper, the far fields of surface wave perturbations excited by an oscillating localized source rapidly moving in 
a heavy liquid of infinite depth are studied. It is shown that the excited fields are a sum of two wedge-like waves located 
insider the corresponding wave wedges. Each of the excited two waves is a complicated wave system of transverse and 
longitudinal perturbations. The properties of the dispersion curves are studied and the phase pictures describing the 
structure of wave surface perturbations are calculated. The characteristics of the excited wave fields are studied depending 
on the basic parameters of the wave generation such as the velocity of motion of the perturbation source and the frequency 
of its oscillations. Uniform asymptotic solutions are constructed in terms of the Airy function and its derivative, which 
permits describing the far fields of surface perturbations both outside and inside the corresponding wave wedges.
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Introduction. The surface wave motions in the marine environment can either originate due to natural 
causes (wind waves, flow past underwater obstacles, bottom relief variations, density and flow fields) or be 
generated by the flow past natural obstacles (platforms, underwater pipelines, complex hydraulic facilities). 
The general system of hydrodynamic equations describing the surface perturbations is a rather complicated 
mathematical problem from the standpoint of proving the existence and uniqueness theorems for solutions 
in the corresponding function classes and from the computational standpoint [1—6]. In the framework of 
the linear theory, the surface wave perturbations are analytically studied by integral representation methods 
and various asymptotic methods [7—11]. The main results of solving the problems of generation of surface 
wave perturbations are represented in most general integral form, and to obtain the integral solutions, it is thus 
necessary to develop asymptotic methods for their investigation which admit a qualitative analysis and rapid 
estimations of the obtained solutions. Moreover, to analyze the data of the sea surface remote sensing, it is 
required to know the causes of various surface phenomena [5].

To obtain a detailed description of a wide class of physical phenomena related to the dynamics of surface 
perturbations in inhomogeneous and unsteady natural environments, it is necessary to have sufficiently 
developed mathematical models. The fact that the structure of the heavy sea surface is three-dimensional is 
also significant, and there are currently no possibilities for large-scale computational experimental modeling of 
three-dimensional ocean flows at large times with a sufficient accuracy. But in several cases, the initial qualitative 
concept of the considered class of wave phenomena can be obtained by using simpler asymptotic models and 
analytic methods for studying them. In this connection, it is necessary to mention the classical hydrodynamic 
problems of constructing asymptotic solutions which describe the evolution of surface perturbations excited 
by sources of various nature in heavy homogeneous liquids. The model solutions permit further obtaining 
representations of surface wave fields with regard to variability and unsteadiness of real natural environments. 
So several results of asymptotic analysis of linear problems describing different regions of generation and 
propagation of surface perturbations also underlie the currently actively developing nonlinear theory of 
generation of ocean waves of extremely large amplitude, the so-called rogue waves [6]. The contemporary 
state of the art in the study of linear and nonlinear surface perturbations can be found in [5].

In [12], the problem of constructing uniform asymptotics of far fields of surface perturbations due to an 
oscillating source moving with a bounded velocity was considered. The goal in the present paper is to construct 
uniform asymptotics of far fields of surface perturbations excited by the fast motion of a localized oscillating 
source of perturbations in a heavy homogeneous liquid of infinite depth.

1. Problem formulation and integral forms of solutions. We consider the steady-state pattern of wave 
perturbations on the surface of an ideal heavy liquid of infinite depth when the perturbation source moves with 
velocity V  in the positive direction of the axis x . The waves are generated by a moving oscillating point 
source of perturbations located at the depth H  (the axis z  is directed upwards from the unperturbed liquid) 
whose capacity varies by the law ( )∞<<∞−εω= tttiq )exp()exp( . Further, we seek the limit as 0→ε  in 
the obtained solution. The perturbation of the potential ),,,( tzyxΦ  with respect to the homogeneous flow 
moving with velocity V  ( ),,( wvu=Φ∇ , where wvu ,,  are components of the vector of perturbations of the 
velocity )0,0,(V ) is described by the following equation with an appropriate linearized boundary condition 
on the surface of the liquid [1—3, 12].
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Here ∆  is the three-dimensional Laplace operator, and )(xδ  is the Dirac delta function. We seek the 
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whose solution in the domain 0<<− zH  has the form
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The free surface elevation ),,( tyxη  is related to the potential ),,,( tzyxΦ  by the condition [1—3, 12]

( ) ( ) ( ) ( )( ) ( ) ( )exp1 0
i t t x, y,z

x, y,t V x, y,z,t i i z, y,z V , z
g t x g x

− ω + ε ∂ϕ ∂ ∂ η = − + Φ = ω− ε ϕ + = ∂ ∂ ∂  
.

Then the Fourier transform ),,( tνµΛ  of the function ),,( tyxη  becomes

( ) ( ) ( ) ( )
( )( )2
exp expi V i t kH

, ,t
i V gk

ω−µ ω −
Λ µ ν =

ε + ω−µ +
.

In the obtained expression, the parameter ε  is preserved only in the denominator, which is necessary to 
determine the displacement of the pole of the integrand with respect to the real axis (into the upper or lower 
half-plane). Then we can obtain the inverse Fourier transform

2 2

exp( ) ( ) exp( )( , , ) exp( )
4 ( ( ))

i i t V kH i x dx y t i y d
i V gk

∞ ∞

−∞ −∞

ω ω−µ − − µ µ
η = − ν ν

π ε + ω−µ +∫ ∫ .                     (2)

The zeros of the denominator in the integrand in (2) determine the dispersion relation: 
0222 =ν+µ−µ−ω≡µω g)V()v,,(B . The set of values of the parameter 0/ >ω= gVM  is divided 

by two characteristic values 41 /  and 96 /  into three intervals (see Fig. 101,102 [2]). For 4/1<M , the 
dispersion curve consists of three branches, one closed and two non-closed, this case was considered in [12]. 
In this case, the wave picture is a sum of two wedge-like (longitudinal) waves with half-opening angle of the 
wave wedge less than 2/π  and the annular-like (transverse) waves around the source. For 9/6>M , the 
dispersion curve consist of two unclosed branches without extrema. In this case, the wave picture is a sum of two 
wedge-like ship waves with the half-opening angle of the wave wedge less than 2/π . If 9/64/1 << M , 
then the dispersion curve consists of two unclosed curves one of which has two local extrema. One branch of 
the dispersion curve corresponds to the usual wedge-like waves with the half-opening angle of the wave wedge 
less than 2/π , and the second branch corresponds to the ship waves with the half-opening angle of the wave 
wedge greater than 2/π  (the wave front is directed upstream away from the source). This system of hybrid 
waves simultaneously has the features of both the annular (transverse) and wedge-like (longitudinal) waves. 
Further, we consider the case 9/6>M . Then the integrand in the inner integral in (2) has two real poles  
µ 21, . Figure 1 illustrates the results of calculations of the corresponding dispersion curves ( )

1 2,
νµ . Here and 

below, the following parameters of calculations were used: H = 5 m, ω = 0.5 s−1, and V = 30 m/s.

2. Construction of asymptotics of the solutions. To calculate the inner integral in (2), it is necessary to 
determine the displacement of the poles µ∆  for 0>ε . For this, we equate the denominator of the integrand in 
the inner integral in (2) with zero for 0=ε : 0=µω )v,,(B , and for 0>ε : 0=µ∆+µε−ω )v,,i(B . Then 
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we obtain: 
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for 0<x , the contour of integration over the variable µ  in (2) becomes closed in the upper half-plane, and the 
poles 

1,2
( )vµ  do not make contributions to the wave field. For 0>x , the contour of integration over µ  in (2) 

becomes closed in the lower half-plane and, taking into account the contributions of the poles, we obtain

1 2( , , ) ( , , ) ( , , )x y t x y t x y tI Iη = + ,                                                 (3)
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For large value of 0>x , the asymptotic behavior of the integrals in the sum (3) is completely determined by 

the stationary points of the phase function ( )αν,Sm  which are determined from the equation ( ) tgm v′ = − αµ . 
First, we consider the first term in (3). The function 

1
( )v
′µ  has one maximum on the interval of integration 

over the variable associated with the corresponding value of the argument α , which is further denoted by 1 A . 
The value 1 A  determines the boundaries of the wave wedge which are described by the equation 1tgy x A= ± . 
For 10 A< α < , the phase function 1( , )vS α  has two stationary points on the real axis v : 

2 1
0 ( ) ( )v v< α < α . 

For 2A1 /π<α< , there are two complex conjugate stationary points 
1 2
( ), ( )v vα α , and for definiteness, we 

assume that 
1

Im ( ) 0v α > .
We introduce the notation: 1 1( )v vy tΦ = −µ − +ω . Then from the phase stationarity condition 

1( ) tgv′µ = − α , we can obtain the parametric equations of the family of constant phase lines 1 CΦ =   
( constC = ) for different values of C :

1

1 1 1 1

( )( )( ) , ( ) .
( ) ( ) ( ) ( )

v t Ct Cx v y v
v v v v v

′µ ω −ω −
= = −

′ ′µ − νµ µ − µ
Figure 2 shows the lines of equal phase for 0,t =  2 ,C n= π  5, 4, ,5n = − −  . The right-hand branch  

( 0n > ) of the dispersion curve 1( )vµ  corresponds to with the upper part of the picture ( 0y > ). Since the phase 
portrait of the waves is symmetric with respect to the axis x , we further consider only this domain. Point A  in 
fig. 1 is the deflection point of the curve 1( )vµ , i.e., a root of the equation 1( ) 0v′′µ = . Therefore, the value A  
is associated with the wave wedge boundary (dashed line in fig. 2) inside which the traveling waves described 
by the integral 1I  are propagating. Point B  in fig. 1 is a root of the equation 1( ) /v v′µ = µ  and is associated 
with dashed line 4 in fig. 2. The part of the dispersion curve from zero to point A  (fig. 1) is associated with 
transverse crests of the waves (solid lines 2 in fig. 2). The part of the dispersion curve from point A  to point 
B  in fig. 1 is associated with longitudinal crests (solid lines 1a in fig. 2) located between dashed lines 3 and 
4 in domain I. The part of the dispersion curve to the right of point B  (fig. 1) is associated with longitudinal 
crests (solid lines 1b in fig. 2) located between the dashed line 4 and the axis x  (domain II in fig. 2). On the 
crests of longitudinal waves in domain I and on the crests of the transverse waves, the phases 1Φ  take the 
values ( )5212 −−−=π ,..,,ll . The phases of the crests of longitudinal waves in domain II in fig. 2 are equal to 

( )5212 ,..,,kk =π . On dashed line 4, the wave phase 1Φ  is zero for 0t = . The longitudinal waves in domain I 
and the transverse waves propagate from the origin to infinity. The longitudinal waves in domain II propagate in 
the direction of dashed line 4. We present the basic characteristics of the wave field for the following parameters 
of calculations: the wave length along the horizontal axis is m.)(/ 882802 11 =µπ=λ , the half-opening 
angle of the wave wedge is 1 20.3A = ° , and the wave front is given by the equation 1tgy x A= .
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Fig. 2. Lines of equal phase for the integral 1I : lines 1a correspond to longitudinal waves in domain I,  
lines 1b correspond to longitudinal wave in domain II, lines 2 correspond to transverse waves,  

line 3 indicates the wave front, and line 4 separates domains I and II.

Рис. 2. Линии равной фазы для интеграла 1I : линии 1a — продольные волны области I, линии 1b — продольные 
волны в области II, линии 2 — поперечные волны, линия 3 — волновой фронт, линия 4 разделяет области I и II.

Inside the wave wedge, the field can be calculated by the method of stationary phase, then the contribution 
is made by both of the stationary 

1 2
( ), ( )v vα α , and the field is exponentially small outside the wave wedge. 

The asymptotics of the integral 1( , , )x y tI  for large 0>x  calculated by the method of stationary phase has 
the form

1 1 2, ,( )x y tI T T≈ + ,

Fig. 1. Dispersion curves 1( )vµ  and 2 ( )vµ ; A  and D  are deflection points,  

and B  is a root of the equation 1( ) /v v′µ = µ .

Рис. 1. Дисперсионные кривые 1( )vµ  и 2 ( )vµ , A  и D  — точки перегиба, 

 B  — корень уравнения 1( ) /v v′µ = µ .
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1
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The asymptotics calculated by the method of stationary phase is not uniform, because the stationary 
points merge on the wave front: 1 11 2

( ) ( )A Av v=  and 1 11 21 1
0( ( )) ( ( ))A Av v= =′′ ′′µ µ . Therefore, the 

asymptotics calculated by the method of stationary phase cannot be applied near the boundary of the wave 
wedge. The uniform asymptotics of 1( , , )x y tI  for 0>x  applicable at far a distance from the wave front and 
near it has the form

1
2 3

1 3

2 exp( ( ( ) ))( , , ) (0.5( ( ( )) ( ( ))) ( ( ))i r tx y t G G Ai xI x
π λ α +ω

≈ σ α + − σ α σ α −                (4)
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− 32
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( ( )) ( ( ( )), ( ))
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21 2
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2 ( )
( ( )) ( ( ( )), ( ))
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G F v v v

σ α
− σ α = α αµ

α′′µ
,

 ,

where ( ) ( )dtttAi ∫
∞

∞−

−τ
π

=τ 3cos
2
1 3  is the Airy function and )(τ′iA  is the derivative of the Airy function. The 

asymptotic (4) becomes non-uniform if the Airy function and its derivative are replaced by the corresponding 
expansions for large values of the argument.

Further, we consider the contribution of the dispersion curve 2 ( )vµ  to the resultant wave field.  
Figure 3 presents the lines of equal phase of the integral ( )t,y,xI 2  for 0,t =  2 ,C n= π  1, 2, , 5n = − − − . 
The upper half of fig. 3 ( 0y > ) corresponds to the left branch of the dispersion curve 2 ( )vµ  ( 0n < ). The 
part of the dispersion curve from zero to point D  in fig. 1 is associated with transverse waves (solid lines 2  
in fig. 3). The part of the dispersion curve from point  to infinity is associated with longitudinal waves (solid lines 1  
in fig. 3). The deflection point is associated with the wave front 2tgy x A=  (dashed line 3 in fig. 3), where the 
half-opening angle of the wave wedge is 2 10.1A = ° . All lines of equal phase go from the origin to infinity. 
The length of the transverse wave along the horizontal axis x  is 2 22 / (0) 171.5 mλ = π µ = . The uniform 
asymptotics of the integral 2( , , )x y tI  for large 0>x  are estimated similarly to (4). We note that the waves 
described by the integral 2I  significantly (approximately by a factor of three) exceed in amplitudes the waves 
determined by the integral 1I .

The above numerical calculations show that an increase in the velocity V  of motion of the source (for 
a fixed frequency ω  of the source oscillations) leads to a decrease in the half-opening angles of both of the 
wave wedges. In this case, the distance between the neighboring wave crests increases; in particular, there is 
an increase in the lengths of transverse waves 1λ  and 2λ  along the axis x . In table 1, we present the results of 
numerical calculations of the main parameters of the excited waves for different values of V .

In fig. 4 results of calculations of the integrals 2( , , )x y tI  for 0, 100t y m= =  and for various values 
gVM /ω=  are presented. Calculations show that as the parameter M  increases, the wavelengths increase 

and the amplitudes of the excited fields decrease. The integral ),,(1 tyxI  when a parameter M  changes 
behaves similarly.
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Fig. 4. The integral 2I  for different values of parameter M : 1=M  — line 1, 5.1=M  — line 2, 2=M  — line 3.

Рис. 4. Интеграл 2I  для различных значений параметра M : 

 1=M  — линия 1, 5.1=M  — линия 2, 2=M  — линия 3.
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Рис. 3. Линии равной фазы для интеграла 2I : линии 1 — продольные волны,  
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Fig. 6. Uniform asymptotics of the integral 2I  at a far distance from the moving source.

Рис. 6. Равномерные асимптотики интеграла 2I  вдали от движущегося источника.
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Figures 5 and 6 present the results of calculations of uniform asymptotics of the integrals 1( , , )x y tI  and 
2( , , )x y tI  for 0=t . The sum of these terms describes the total field of the free surface elevation at a far 

distance from the moving oscillating source of perturbations.

Fig. 5. Uniform asymptotics of the integral 1I  at a far distance from the moving source.

Рис. 5. Равномерные асимптотики интеграла 1I  вдали от движущегося источника.
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Conclusion. The far fields of surface wave perturbations excited by an oscillatin  g localized source rapidly 
moving in a heavy liquid of infinite depth are studied. The excited fields are a sum of two wedge-like ship waves 
located insider the corresponding wave wedges. Uniform asymptotic solutions are constructed in terms of the 
Airy function and its derivative, which permits describing the far fields of surface perturbations both outside 
and inside the corresponding wave wedges. Each of the excited two waves is a complicated wave system of 
transverse and longitudinal perturbations. It is shown that the amplitude of one wave system is several times 
greater than the amplitude of the other wave system. The properties of the dispersion curves are studied and 
the phase pictures describing the structure of wave surface perturbations are calculated. The characteristics of 
the excited surface perturbations were studied depending on the basic parameters of the wave generation such 
as the source motion velocity and the frequency of its oscillations. The obtained asymptotics of surface wave 
far fields allow one efficiently to calculate the basic characteristics of wave fields and, in addition, qualitatively 
to analyze the obtained solutions, which is important for obtaining the well-posed statements of mathematical 
models of wave dynamics of surface perturbations of real natural environment.

The research was carried out in the framework of the Federal target program, projects N. 0149-2018-0003  
(I. Yu. Vladimirov) and N. АААА-А17-117021310375-7 (V. V. Bulatov, Yu. V. Vladimirov).
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Table 1
Wave generation parameters dependence from source velocity

Зависимость параметров волновой генерации от скорости источника

, /V m s 5.334 6 10 20 30 50

M 96 / 0.306 0.510 1.020 1.531 2.551

,1 degreeA 90 75.7 45.8 26.9 20.3 14.6

1 12 / (0),mλ = π µ 368.2 382.2 463.6 652.1 828.8 1163.7

,2 degreeA 15.6 15.3 13.7 11.5 10.1 8.5

m),(/ 02 22 µπ=λ 12.2 14.9 34.1 96.9 171.5 339.3


